Clinical implementation of SRS cones demands particular experimental care and dosimetric considerations in order to deliver precise and safe radiotherapy to patients. The purpose of this work was to present the commissioning data of recent Aktina cones combined with a 6MV flattened beam produced by an Elekta VersaHD linear accelerator. Additionally, the modelling process, and an assessment of dosimetric accuracy of the RayStation Monte Carlo dose calculation algorithm for cone based SRS was performed. There are currently no studies presenting beam data for this equipment and none that outlines the modelling parameters and validation of dose calculation using RayStation's photon Monte Carlo dose engine with cones. Beam data was measured using an SFD and a microDiamond and benchmarked against EBT3 film for cones of diameter 5-39 mm. Modelling was completed and validated within homogeneous and heterogeneous phantoms. End-to-end image-guided validation was performed using a StereoPHAN™ housing, an SRS MapCHECK and EBT3 film, and calculation time was investigated as a function of statistical uncertainty and field diameter. The TPS calculations agreed with measured data within their estimated uncertainties and clinical treatment plans could be calculated in under a minute. The data presented serves as a reference for others commissioning Aktina stereotactic cones and the modelling parameters serve similarly, while providing a starting point for those commissioning the same TPS algorithm for use with cones. It has been shown in this work that RayStation's Monte Carlo photon dose algorithm performs satisfactorily in the presence of SRS cones.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10703943PMC
http://dx.doi.org/10.1007/s13246-023-01315-7DOI Listing

Publication Analysis

Top Keywords

monte carlo
16
srs cones
12
carlo dose
12
dose calculation
12
commissioning aktina
8
cones
8
photon monte
8
calculation algorithm
8
beam data
8
modelling parameters
8

Similar Publications

A Probabilistic Liquefaction Hazard Analysis: Case Studies from the Marmara Region.

Geotech Geol Eng (Dordr)

January 2025

School of Mechanical, Aerospace and Civil Engineering, The University of Sheffield, Sheffield, UK.

Earthquake induced soil liquefaction poses a significant threat to buildings and infrastructure, as evidenced by numerous catastrophic seismic events. Existing approaches of regional liquefaction hazard assessment predominantly rely on deterministic analysis methods. This paper presents a novel Probabilistic Liquefaction Hazard Analysis (PLHA) framework based on Monte-Carlo (MC) simulations to mitigate future seismic risks associated with liquefaction.

View Article and Find Full Text PDF

A complementary experimental and computational study on methanol adsorption isotherms of H-ZSM-5.

Phys Chem Chem Phys

January 2025

UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, OX11 0FA, UK.

Methanol adsorption isotherms of fresh f-ZSM-5 and steamed s-ZSM-5 (Si/Al ≈ 40) are investigated experimentally at room temperature under equilibrium and by grand canonical Monte Carlo (GCMC) simulations with the aim of understanding the adsorption capacity, geometry and sites as a function of steam treatment (at 573 K for 24 h). Methanol adsorption energies calculated by GCMC are complemented by density functional theory (DFT) employing both periodic and quantum mechanics/molecular mechanics (QM/MM) techniques. Physical and textural properties of f-ZSM-5 and s-ZSM-5 are characterised by diffuse reflectance infrared Fourier transformed spectroscopy (DRIFTS) and N-physisorption, which form a basis to construct models for f-ZSM-5 and s-ZSM-5 to simulate methanol adsorption isotherms by GCMC.

View Article and Find Full Text PDF

Theory and simulations are used to demonstrate implementation of a variational Bayes algorithm called "active inference" in interacting arrays of nanomagnetic elements. The algorithm requires stochastic elements, and a simplified model based on a magnetic artificial spin ice geometry is used to illustrate how nanomagnets can generate the required random dynamics. Examples of tracking and PID control are demonstrated and shown to be consistent with the original stochastic differential equation formulation of active inference.

View Article and Find Full Text PDF

Multi-item retro-cueing effects refer to better working memory performance for multiple items when they are cued after their offset compared to a neutral condition in which all items are cued. However, several studies have reported boundary conditions, and findings have also sometimes failed to replicate. We hypothesized that a strategy to focus on only one of the cued items could possibly yield these inconsistent patterns.

View Article and Find Full Text PDF

Towards Rational Design of Confined Catalysis in Carbon Nanotube by Machine Learning and Grand Canonical Monte Carlo Simulations.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.

The microenvironment is recognized to be as crucial as active sites in heterogeneous catalysis. It was found that the catalytic activity of a set of chemical reactions can be significantly influenced by the confined space of carbon nanotubes (CNTs), with some reactions showing superior activity, while others experience a negative impact. The rational design of confined catalysis must rely on the accurate insights of confined microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!