AI Article Synopsis

  • Reversible hydrogen storage through stable substances like formic acid is essential for moving away from fossil fuels.
  • The study introduces a redesigned catalyst using a tertiary amine-functionalized iridium(III) complex that efficiently promotes the hydrogenation of CO to formic acid.
  • The catalyst has shown high turnover numbers and rates, and the research includes mechanistic studies aimed at improving future catalysts.

Article Abstract

Reversible hydrogen storage in the form of stable and mostly harmless chemical substances such as formic acid (FA) is a cornerstone of a fossil fuels-free economy. In the past, we have reported a primary amine-functionalized bifunctional iridium(III)-PC(sp )P pincer complex as a mild and chemoselective catalyst for the additive-free decomposition of neat formic acid. In this manuscript, we report on the successful application of a redesigned complex bearing tertiary amine functionality as a catalyst for mild hydrogenation of CO to formic acid. The catalyst demonstrates TON up to 6×10 and TOF up to 1.7×10  h . In addition to the practical value of the catalyst, experimental and computational mechanistic studies provide the rationale for the design of improved next-generation catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202301915DOI Listing

Publication Analysis

Top Keywords

formic acid
12
pincer complex
8
tertiary amine
8
hydrogenation bifunctional
4
bifunctional pcsp
4
pcsp iridiumiii
4
iridiumiii pincer
4
complex equipped
4
equipped tertiary
4
amine functional
4

Similar Publications

Rare-earth oxide promoted Pd electrocatalyst for formic acid oxidation.

Dalton Trans

January 2025

Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.

The development of Pd-based materials with high activity and long-term stability is crucial for their practical applications as an anode catalyst in direct formic acid fuel cells. Herein, we reveal that the catalytic activity of Pd towards formic acid oxidation can be enhanced by incorporation of a series of rare-earth oxides, including ScO, CeO, LaO, and PrO. For example, Pd nanoparticles incorporated with ScO supported on nitrogen-doped reduced graphene oxide (Pd-ScO/N-rGO-, = 1/3, 1/2, 2/3, 1, and 3/2; "" denotes the molar ratio of Pd : Sc) can be obtained using a sodium borohydride reduction method.

View Article and Find Full Text PDF

How FocA facilitates fermentation and respiration of formate by .

J Bacteriol

January 2025

Institute for Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany.

Formic acid is an important source of reductant and energy for many microorganisms. Formate is also produced as a fermentation product, e.g.

View Article and Find Full Text PDF

Electrochemical oxidation of small molecules shows great promise to substitute oxygen evolution reaction (OER) or hydrogen oxidation reaction (HOR) to enhance reaction kinetics and reduce energy consumption, as well as produce high-valued chemicals or serve as fuels. For these oxidation reactions, high-valence metal sites generated at oxidative potentials are typically considered as active sites to trigger the oxidation process of small molecules. Isolated atom site catalysts (IASCs) have been developed as an ideal system to precisely regulate the oxidation state and coordination environment of single-metal centers, and thus optimize their catalytic property.

View Article and Find Full Text PDF

Objective: This study aimed to qualitatively study the main chemical components of apple peel in APORT, Kazakhstan, by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) and to compare the components of apple peels with different provenances.

Methods: An ACQUITY UPLC HSS T3 (100 mm × 2.1 mm, 1.

View Article and Find Full Text PDF

A simple, fast, sample-saving, and sensitive liquid chromatography-tandem mass spectrometry method was established with a linear range adjusted by in-source collision-induced dissociation. Notably, this could simultaneously determine busulfan, fludarabine, phenytoin, and posaconazole in plasma from children, each having unique physical and chemical properties. The procedure necessitated only 20 μL of plasma and involved a simple protein precipitation process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!