Lactobacillus rhamnosus inhibits osteoclast differentiation by suppressing the TLR2/NF-κB pathway.

Oral Dis

Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China.

Published: May 2024

Objective: This study aimed to investigate the role of ultrasonicated Lactobacillus rhamnosus extract in osteoclast differentiation and its underlying mechanism, providing new strategies for the treatment of periodontitis.

Materials And Methods: Osteoclasts were induced using macrophage colony-stimulating factor and receptor activator for nuclear factor-κB ligand. Lactobacillus rhamnosus extracts were obtained via ultrasonic crushing and ultracentrifugation. The effects of the LGG extract on osteoclast differentiation were evaluated, and the related signaling pathways were examined using western blotting. A mouse periodontitis model was established, and Lactobacillus rhamnosus extract was injected into the gingival sulcus to evaluate the inhibitory effect of Lactobacillus rhamnosus extract on alveolar bone resorption.

Results: At 50 μg/mL, Lactobacillus rhamnosus extract inhibited osteoclast differentiation with no effect on apoptosis and proliferation. This phenomenon was achieved by deactivating the NF-κB/c-Fos/NFATc1 signaling pathway through toll-like receptor 2. The in vivo results showed that the local injection of Lactobacillus rhamnosus extract suppressed osteoclast differentiation and alveolar bone resorption.

Conclusion: The ultrasonicated extract of Lactobacillus rhamnosus inhibited osteoclast differentiation by suppressing the activation of the NF-κB/c-Fos/NFATc1 pathway. Furthermore, it inhibited the destruction of the alveolar bone, providing a new strategy for the use of probiotics in the treatment of periodontitis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/odi.14712DOI Listing

Publication Analysis

Top Keywords

lactobacillus rhamnosus
32
osteoclast differentiation
24
rhamnosus extract
20
alveolar bone
12
lactobacillus
8
differentiation suppressing
8
extract osteoclast
8
inhibited osteoclast
8
rhamnosus
7
extract
7

Similar Publications

Lactobacillus acidophilus YL01 and its exopolysaccharides ameliorate obesity and insulin resistance in obese mice via modulating intestinal specific bacterial groups and AMPK/ACC signaling pathway.

Int J Biol Macromol

January 2025

College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China. Electronic address:

Probiotics intervention by Lactobacillus acidophilus has potential effect on alleviating obesity and insulin resistance. However, the limited knowledge of functional substances and potential regulatory mechanisms hinder their widespread application. Herein, L.

View Article and Find Full Text PDF

A variety of phytochemicals from different plants are collected by bees into bee pollen granules. This research focused on evaluating the effects of lactic acid fermentation and enzymatic hydrolysis on the antibacterial activity of bee pollen and its interaction with antibiotics. There is limited knowledge regarding the interactions between treated bee pollen extracts and antibiotics, and this study contributes to the field by providing new insights into the antibacterial activity of pollen subjected to eight distinct treatment methods.

View Article and Find Full Text PDF

The demand for healthier snack options has driven innovation in frozen dairy products. This study developed and characterized novel frozen dairy snacks fermented with probiotics ( LA5; GG, and BIOTEC003) and containing 2% blueberry bagasse. Four formulations (LA5, LGG, LA5-BERRY, and LGG-BERRY) were analyzed for their nutritional, physicochemical, functional, and sensory properties.

View Article and Find Full Text PDF

Disturbances of the intestinal barrier enabling bacterial translocation exacerbate alcoholic liver disease (ALD). GG (LGG) has been shown to exert beneficial effects in gut dysbiosis and chronic liver disease. The current study assessed the combined effects of LGG and metformin, which play roles in anti-inflammatory and immunoregulatory processes, in alcohol-induced liver disease mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!