Plasmonic catalysis provides a possible means for driving chemical reactions under relatively mild conditions. Rational design of these systems is impeded by the difficulty in understanding the electron dynamics and their interplay with reactions. Real-time, time-dependent density functional theory (RT-TDDFT) can provide dynamic information on excited states in plasmonic systems, including those relevant to plasmonic catalysis, at time scales and length scales that are otherwise out of reach of many experimental techniques. Here, we discuss previous RT-TDDFT studies of plasmonic systems, focusing on recent work that gains insight into plasmonic catalysis. These studies provide insight into plasmon dynamics, including size effects and the role of specific electronic states. Further, these studies provide significant insight into mechanisms underlying plasmonic catalysis, showing the importance of charge transfer between metal and adsorbate states, as well as local field enhancement, in different systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10436373 | PMC |
http://dx.doi.org/10.1021/acsnanoscienceau.2c00061 | DOI Listing |
Nat Commun
January 2025
Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
Photocatalytic water disinfection technology is highly promising in off-grid areas due to abundant year-round solar irradiance. However, the practical use of powdered photocatalysts is impeded by limited recovery and inefficient inactivation of stress-resistant bacteria in oligotrophic surface water. Here we prepare a floatable monolithic photocatalyst with ZIF-8-NH loaded Ag single atoms and nanoparticles (Ag/ZIF).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
Advanced carbon-metal hybrid materials with controllable electronic and optical properties, as well as chemical reactivities, have attracted significant attention for emerging applications, including energy conversion and storage, catalysis and environmental protection. However, the commercialization of these materials is hampered by several vital problems, including energy-intensive synthesis and expensive chemicals, and inefficient control of their structures and properties. Herein, we report the simple and controllable engineering of nanocarbon-metal self-assembled silver nanocatalysts (SSNs) derived from polycarbonate (PC)-based optical discs using microplasmas under ambient conditions.
View Article and Find Full Text PDFRSC Adv
January 2025
School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China.
The hydrogenation of carbon dioxide into profitable chemicals is a viable path toward achieving the objective of carbon neutrality. However, the typical approach for hydrogenation of CO heavily relies on thermally driven catalysis at high temperatures, which is not aligned with the goals of carbon neutrality. Thus, there is a critical need to explore new catalytic methods for the high-efficiency conversion of CO.
View Article and Find Full Text PDFACS Photonics
January 2025
Cardiff University School of Physics and Astronomy, The Parade, Cardiff CF24 3AA, United Kingdom.
The field of chiral nanoparticles is rapidly expanding, yet measuring the chirality of single nano-objects remains a challenging endeavor. Here, we report a technique to detect chiro-optical effects in single plasmonic nanoparticles by means of phase-sensitive polarization-resolved four-wave mixing interferometric microscopy. Beyond conventional circular dichroism, the method is sensitive to the particle polarizability, in amplitude and phase.
View Article and Find Full Text PDFChem Asian J
January 2025
CSIR-National Chemical Laboratory: CSIR National Chemical Laboratory, Catalysis and Inorganic Chemistry Division, Dr. Homi Bhabha Road, 411 008, Pune, INDIA.
Present work describes a sol-gel assisted one-pot synthesis of mesoporous Fe₂O₃-TiO₂ nanocomposites (TiFe) with different Ti:Fe ratios, and fabrication of Ag-integrated with TiFe nanocomposites (TiFeAg) by a chemical reduction method and demonstrated for high solar H2 generation activity in direct sunlight. Enhanced solar H2 production is attributed to the light absorption from entire UV+Visible region of solar spectrum combined with Schottky (Ag-semiconductor) and heterojunctions (TiO2-Fe2O3), as evidenced from HRTEM and various characterization studies. TiFeAg-2 thin film (1 wt% Ag-loaded TiFe-4) displayed the highest activity with a solar H2 yield of 7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!