Heavy water is known to affect many different biological systems, with the most striking effects observed at the cellular level. Many dynamic processes, such as migration or invasion, but also central processes of cell proliferation are measurably inhibited by the presence of deuterium oxide (DO). Furthermore, individual cell deformabilities are significantly decreased upon DO treatment. In order to understand the origin of these effects, we studied entangled filamentous actin networks, a commonly used model system for the cytoskeleton, which is considered a central functional element for dynamic cellular processes. Using bulk shear rheology to extract rheological signatures of reconstituted actin networks at varying concentrations of DO, we found a non-monotonic behavior, which is explainable by a drastic change in the actin network architecture. Applying light scattering and fluorescence microscopy, we were able to demonstrate that the presence of deuterium oxide induces bundling in reconstituted entangled networks of filamentous actin. This constitutes an entirely novel and previously undescribed actin bundling mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10437092 | PMC |
http://dx.doi.org/10.1039/d3ra03917j | DOI Listing |
mBio
January 2025
Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
Many bacterial toxins exert their cytotoxic effects by enzymatically inactivating one or more cytosolic targets in host cells. To reach their intracellular targets, these toxins possess functional domains or subdomains that interact with and exploit various host factors and biological processes. Despite great progress in identifying many of the key host factors involved in the uptake of toxins, significant knowledge gaps remain as to how partially characterized and newly discovered microbial toxins exploit host factors or processes to intoxicate target cells.
View Article and Find Full Text PDFFront Parasitol
March 2024
Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico.
The retromer is a highly conserved eukaryotic complex formed by the cargo selective complex (CSC) and the sorting nexin (SNX) dimer subcomplexes. Its function is protein recycling and recovery from the endosomes to conduct the target molecules to the trans-Golgi network or the plasma membrane. The protozoan responsible for human amoebiasis, , exhibits an active membrane movement and voracious phagocytosis, events in which the retromer may be fully involved.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700, China.
This study aimed to investigate the potential role of Colquhounia Root Tablets against bone destruction in rheumatoid arthritis(RA) and its molecular mechanism. The study used ultra-performance liquid chromatography-mass spectrometry to analyze the major components of Colquhounia Root Tablets and predicted its candidate target gene set based on the major components. The key targets of RA bone destruction were obtained through GeneCards and the Database of Genetics and Medical Literature(OMIM), protein-protein interaction(PPI) network was constructed, and the key targets were identified by topological analysis.
View Article and Find Full Text PDFDiabetic kidney disease (DKD) progression is often marked by early glomerular endothelial cell (GEC) dysfunction, including alterations in the fenestration size and number linked to impaired glomerular filtration. However, the cellular mechanisms regulating GEC fenestrations remain poorly understood due to limitations in existing models, challenges in imaging small fenestrations , and inconsistencies between and findings. This study used a logic-based protein-protein interaction network model with normalized Hill functions for dynamics to explore how glucose-mediated signaling dysregulation impacts fenestration dynamics in GECs.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Computer and Information Sciences, Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States.
Liquid phase-separating proteins can form condensates that play an important role in spatial and temporal organization of biological cells. The understanding of the mechanisms that lead to the formation of protein condensates and their interactions with other biomolecules may lead to processing routes for soft materials with tailored geometry and function. Fused in sarcoma (FUS) is an example of a nuclear protein that forms stable complexes, and recent studies have highlighted its ability to wet actin filaments and bundle them into networks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!