Comprehensive structural characterization of phosphatidylcholines (PCs) is essential to understanding their biological functions and roles in metabolism. Electron induced dissociation (EID) of protonated PCs directly generated from biological tissues has previously been shown to provide in-depth structural information on the lipid headgroup, regiosiomerism of fatty acyl tails and double bond positions. Although phosphatidylcholine ions formed via alkali metal cationization ( [M + Na] and [M + K]) are commonly generated during matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry experiments, the gas-phase ion chemistry behavior of EID on sodium- and potassium-cationized phosphatidylcholine ion types has not been studied for ions generated directly from tissue. Herein, we demonstrate EID on [M + Na] and [M + K] ion types in a MALDI imaging mass spectrometry workflow for lipid structural characterization. Briefly, near-complete structural information can be obtained upon EID of sodium- and potassium-cationized PCs, including diagnostic fragmentation of the lipid headgroup as well as identification of fatty acyl chain positions and double bond position. EID of cationized lipids generates s-specific glycerol backbone cleavages as well as a favorable combined loss of -2 fatty acid with choline over -1, allowing for facile differentiation and relative quantification of PC regioisomers. Moreover, relative quantification of positional isomers from biological tissue reveals that the relative percentages of sodium- and potassium-cationized -positional isomers varies significantly in different regions of rat brain tissue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10438893PMC
http://dx.doi.org/10.1016/j.ijms.2022.116998DOI Listing

Publication Analysis

Top Keywords

sodium- potassium-cationized
16
relative quantification
12
potassium-cationized phosphatidylcholine
8
directly tissue
8
electron induced
8
induced dissociation
8
structural characterization
8
lipid headgroup
8
fatty acyl
8
double bond
8

Similar Publications

Time-of-flight secondary ion mass spectrometry is one of the most promising techniques for label-free analysis of biomolecules with nanoscale spatial resolution. However, high-resolution imaging of larger biomolecules such as phospholipids and peptides is often hampered by low yields of molecular ions. Matrix-enhanced SIMS (ME-SIMS), in which an organic matrix is added to the sample, is one promising approach to enhancing the ion yield for biomolecules.

View Article and Find Full Text PDF

Comprehensive structural characterization of phosphatidylcholines (PCs) is essential to understanding their biological functions and roles in metabolism. Electron induced dissociation (EID) of protonated PCs directly generated from biological tissues has previously been shown to provide in-depth structural information on the lipid headgroup, regiosiomerism of fatty acyl tails and double bond positions. Although phosphatidylcholine ions formed via alkali metal cationization ( [M + Na] and [M + K]) are commonly generated during matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry experiments, the gas-phase ion chemistry behavior of EID on sodium- and potassium-cationized phosphatidylcholine ion types has not been studied for ions generated directly from tissue.

View Article and Find Full Text PDF

Rationale: Clerodane-type diterpenes from Casearia species show important pharmacological activites such as antitumor, antimicrobial and anti-inflamatory. There are several mass spectrometry (MS)-based methods for identification of diterpenes; however, there is still a lack of MS procedures capable of providing characteristic fragmentation pathways for a rapid and unambiguous elucidation of casearin-like compounds.

Methods: Casearin-like compounds were investigated by electrospray ionization tandem mass spectrometry (ESI-MS/MS).

View Article and Find Full Text PDF

Mass spectrometry imaging of lipids using MALDI-TOF/TOF mass spectrometers is of growing interest for chemical mapping of organic compounds at the surface of tissue sections. Many efforts have been devoted to the best matrix choice and deposition technique. Nevertheless, the identification of lipid species desorbed from tissue sections remains problematic.

View Article and Find Full Text PDF

Oligosaccharides (mono- to hexamers) that mimic the terminal epitopes of O-antigens of Vibrio cholerae O:1, serotypes Ogawa and Inaba, have been studied by electrospray ion trap (ESI IT) mass spectrometry. Sodium or potassium-cationized adducts are characteristic ions under the conditions of ESI-MS analysis. The tentative pathways of fragmentation have been proven by multistage ion trap MS (MS(n), n = 1-3).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!