A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

LEARN algorithm: a novel option for predicting non-alcoholic steatohepatitis. | LitMetric

Background: There is an unmet need for accurate non-invasive methods to diagnose non-alcoholic steatohepatitis (NASH). Since impedance-based measurements of body composition are simple, repeatable and have a strong association with non-alcoholic fatty liver disease (NAFLD) severity, we aimed to develop a novel and fully automatic machine learning algorithm, consisting of a deep neural network based on impedance-based measurements of body composition to identify NASH [the bioeLectrical impEdance Analysis foR Nash (LEARN) algorithm].

Methods: A total of 1,259 consecutive subjects with suspected NAFLD were screened from six medical centers across China, of which 766 patients with biopsy-proven NAFLD were included in final analysis. These patients were randomly subdivided into the training and validation groups, in a ratio of 4:1. The LEARN algorithm was developed in the training group to identify NASH, and subsequently, tested in the validation group.

Results: The LEARN algorithm utilizing impedance-based measurements of body composition along with age, sex, pre-existing hypertension and diabetes, was able to predict the likelihood of having NASH. This algorithm showed good discriminatory ability for identifying NASH in both the training and validation groups [area under the receiver operating characteristics (AUROC): 0.81, 95% CI: 0.77-0.84 and AUROC: 0.80, 95% CI: 0.73-0.87, respectively]. This algorithm also performed better than serum cytokeratin-18 neoepitope M30 (CK-18 M30) level or other non-invasive NASH scores (including HAIR, ION, NICE) for identifying NASH (P value <0.001). Additionally, the LEARN algorithm performed well in identifying NASH in different patient subgroups, as well as in subjects with partial missing body composition data.

Conclusions: The LEARN algorithm, utilizing simple easily obtained measures, provides a fully automated, simple, non-invasive method for identifying NASH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10432286PMC
http://dx.doi.org/10.21037/hbsn-21-523DOI Listing

Publication Analysis

Top Keywords

learn algorithm
12
impedance-based measurements
12
measurements body
12
body composition
12
non-alcoholic steatohepatitis
8
nash
8
identify nash
8
training validation
8
validation groups
8
identifying nash
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!