Oxidative stress is a common phenomenon in poultry production. Several molecules, including antioxidant genes, miRNAs, and gut microbiota metabolites, have been reported to participate in redox regulation. P8 (P8) was shown to improve the antioxidant capacity of chickens, but the specific molecular mechanisms remain unclear. In this study, 400 broilers were allocated to 4 treatment groups: control diet (Con group), control diet + dexamethasone injection (DEX group), control diet containing 1 × 10 CFU/g P8 (P8 group), and control diet containing 1 × 10 CFU/g P8 + DEX injection (DEX_P8 group). Integrated analysis of the microbiome, metabolomics, and miRNAomics was conducted to investigate the roles of P8 in oxidative stress in broilers. Results demonstrated that P8 supplementation significantly improved growth performance, jejunal morphology, and antioxidant function in DEX-treated broilers. Analysis of the gut microbiota revealed a higher abundance of ( = 0.01) and ( = 0.05) in the DEX_P8 group than in the DEX group. Functional prediction indicated that certain pathways, including the phenylacetate degradation pathway, were enriched in the DEX_P8 group compared to the DEX group. Metabolites in the cecal contents were distinct between the groups. P8 supplementation increased the content of metabolites with antioxidant capacity, e.g., urobilinogen ( < 0.01), and decreased that of metabolites related to oxidative stress, e.g., genistein ( < 0.01). Functional prediction indicated that metabolites that differed between the DEX_P8 and DEX groups were enriched in pathways including "tryptophan metabolism" and "primary bile acid biosynthesis". The miRNAomics analysis further showed that, compared to the DEX group, several miRNAs in the jejunum, such as gga-miR-21-3p ( = 0.03), were increased, whereas gga-miR-455-3p ( = 0.02) was decreased in the DEX_P8 group. The PI3K-Akt, Ras, and Rap1 signaling pathways were enriched in the DEX_P8 group compared to the DEX group through KEGG analysis. Correlation analysis revealed potential interactions between growth performance, oxidation/antioxidation, jejunal morphology, gut microbiota, cecal content metabolites, and jejunal miRNAs. Overall, our results indicate that P8 supplementation may improve the growth performance, jejunal morphology and antioxidant capacity of DEX-treated broilers by regulating gut microbiota, its metabolites, and intestinal miRNAs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10432922PMC
http://dx.doi.org/10.1016/j.aninu.2023.06.002DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
control diet
12
group control
12
dex group
12
dex_p8 group
12
stress broilers
8
gut microbiota
8
antioxidant capacity
8
group
8
diet 1 × 10 cfu/g
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!