Diabetic kidney disease (DKD) is a chronic complication of diabetes and the leading cause of end-stage renal disease (ESRD) worldwide. Currently, there are limited therapeutic drugs available for DKD. While previous research has primarily focused on glomerular injury, recent studies have increasingly emphasized the role of renal tubular injury in the pathogenesis of DKD. Various factors, including hyperglycemia, lipid accumulation, oxidative stress, hypoxia, RAAS, ER stress, inflammation, EMT and programmed cell death, have been shown to induce renal tubular injury and contribute to the progression of DKD. Additionally, traditional hypoglycemic drugs, anti-inflammation therapies, anti-senescence therapies, mineralocorticoid receptor antagonists, and stem cell therapies have demonstrated their potential to alleviate renal tubular injury in DKD. This review will provide insights into the latest research on the mechanisms and treatments of renal tubular injury in DKD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10433744 | PMC |
http://dx.doi.org/10.3389/fendo.2023.1238927 | DOI Listing |
Sci Rep
January 2025
Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
Renal fibrosis is widely recognized as the ultimate outcome of many chronic kidney diseases. The process of epithelial-mesenchymal transition (EMT) plays a critical role in the progression of fibrosis following renal injury. UHRF1, as a critical epigenetic regulator, may play an essential role in the pathogenesis and progression of renal fibrosis and EMT.
View Article and Find Full Text PDFNat Commun
January 2025
College of Polymer Science and Engineering, West China School of Public Health, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.
Chronic kidney disease (CKD) ultimately causes renal fibrosis and end-stage renal disease, thus seriously threatens human health. However, current medications for CKD and fibrosis are inefficient, which is often due to poor targeting capability to renal tubule. In this study, we discover that biomimetic high-density lipoprotein (bHDL) lipid nanoparticles possess excellent targeting ability to injured tubular epithelial cells by kidney injury molecule-1(KIM-1) mediated internalization.
View Article and Find Full Text PDFClin Chim Acta
January 2025
School of Life Sciences, Jiangsu University, Zhenjiang, China. Electronic address:
Noninvasive detection of BK virus, for early detection of BK polyomavirus-associated nephropathy post-renal transplantation, is currently an active subject of investigation. In this study, we developed and validated a novel risk score diagnostic assay (PymiR Score) based on measurements of three urine miRNAs, including BKV-related miRNA (bkv-miR-B1-5p), polyomavirus-related miRNA (bkv-miR-B1-3p) and renal tubular injury-related miRNA (miR-21-5p), by quantitative polymerase chain reaction. The limit of detection of the three miRNAs was 2 × 10 copies/mL, while the intra- and inter-assay coefficients of variation were in the ranges of 2.
View Article and Find Full Text PDFIntroduction: Podocyte injury has been proven to be a major cause for poor renal outcomes after acute kidney injury (AKI). However, clinical trial data are still limited. This study aimed to explore the clinical correlations between podocyte injury and renal outcomes in hospitalized AKI patients.
View Article and Find Full Text PDFClin Sci (Lond)
January 2025
Zhengzhou University First Affiliated Hospital, Zhengzhou, China.
Neddylation is a process of attaching neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8) to substrates for the protein function modulation via enzymatic cascades involving NEDD8-activating enzyme (E1), NEDD8-conjugating enzyme (E2), and NEDD8 ligase (E3). Defective in cullin neddylation 1 (DCN1) serves as a co-E3 ligase, that can simultaneously bind E2 UBE2M and cullin proteins to stabilize the catalytic center of the Cullin-Ring E3 ligase (CRL) complex, thereby promoting cullin neddylation. Neddylation is reported to be activated in diverse human diseases, and inhibition of protein neddylation has been regarded as a promising anticancer therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!