Background: There are very few reports of Wolfram syndrome-2 (WFS2) in the literature, and understanding of involvement of the gastrointestinal (GI) tract in the syndrome is limited. Objectives: This study aims to describe the clinical presentations of a large number of WFS2 patients with specific focus on their GI manifestations.

Methods: This is a retrospective case series study. Patients who were homozygous for the gene mutation were identified through the genetic department of Al-Makassed hospital. Their medical records were reviewed, and biometric data have been obtained. The data were collected and arranged on a data sheet, and descriptive analysis was done using SPSS.

Results: Thirteen patients from 9 families were identified; diabetes mellitus was present in 6 of them, optic atrophy in 5, diabetes insipidus (DI) in 5, and deafness in 2. All of the patients had GI manifestations with abnormal findings on upper endoscopy. Dysmorphic facial features and abnormal findings on brain MRI were present in 3 of our patients. The GI manifestations including GI bleeding and severe ulcerations were the first to appear in 9 of them, while anemia in the remaining 4.

Conclusion: This is the largest study to date describing patients with WFS2. This study's evidence shows the prominent presence of GI involvement, and the severe findings on endoscopy, including duodenal, gastric, and esophageal ulcerations and strictures. Unlike in the Jordanian report, some of the patients in our report also have DI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10435029PMC
http://dx.doi.org/10.1097/PG9.0000000000000339DOI Listing

Publication Analysis

Top Keywords

wolfram syndrome-2
8
case series
8
patients manifestations
8
abnormal findings
8
patients
7
syndrome-2 severe
4
severe gastrointestinal
4
gastrointestinal bleeding
4
bleeding case
4
series literature
4

Similar Publications

Background: Wolfram syndrome is a rare autosomal recessive neurodegenerative disorder that affects 1/200,000 to 1/1,000,000 children. It is characterized by juvenile onset diabetes, optic nerve atrophy and other systemic manifestations. Symptoms of the disease arise mostly in early childhood with a high mortality rate due to severe neurological complications.

View Article and Find Full Text PDF

Background: There are very few reports of Wolfram syndrome-2 (WFS2) in the literature, and understanding of involvement of the gastrointestinal (GI) tract in the syndrome is limited. Objectives: This study aims to describe the clinical presentations of a large number of WFS2 patients with specific focus on their GI manifestations.

Methods: This is a retrospective case series study.

View Article and Find Full Text PDF

Targeting Ca-dependent pathways to promote corneal epithelial wound healing induced by CISD2 deficiency.

Cell Signal

September 2023

Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan; Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan. Electronic address:

Chronic epithelial defects of the cornea, which are usually associated with severe dry eye disease, diabetes mellitus, chemical injuries or neurotrophic keratitis, as well as aging, are an unmet clinical need. CDGSH Iron Sulfur Domain 2 (CISD2) is the causative gene for Wolfram syndrome 2 (WFS2; MIM 604928). CISD2 protein is significantly decreased in the corneal epithelium of patients with various corneal epithelial diseases.

View Article and Find Full Text PDF

Human NEET proteins contain two [2Fe-2S] iron-sulfur clusters, bound to three Cys residues and one His residue. They exist in two redox states. Recently, these proteins have revealed themselves as attractive drug targets for mitochondrial dysfunction-related diseases, such as type 2 diabetes, Wolfram syndrome 2, and cancers.

View Article and Find Full Text PDF

Rejuvenation: Turning Back Time by Enhancing CISD2.

Int J Mol Sci

November 2022

Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.

The aging human population with age-associated diseases has become a problem worldwide. By 2050, the global population of those who are aged 65 years and older will have tripled. In this context, delaying age-associated diseases and increasing the healthy lifespan of the aged population has become an important issue for geriatric medicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!