The angiotensin converting enzyme inhibiting activity of linear rgd-containing peptides was investigated using approach. The synthesized compound (parent compound) using experimental approach as well as its derivatives was subjected to computational examination using appropriate software. The investigated compounds were optimized using Spartan 14 while the docking study was executed via Pymol, AutoDock Tool, AutoDock Vina and discovery studio. The descriptors obtained (2D and 3D) were screened and the descriptor with highest capacity (squared correlation coefficient) was correlated to the calculated binding affinity. More so, the docking analysis was performed on the investigated linear rgd-containing peptides and angiotensin converting enzyme (PDB ID: 3nxq) via docking software and the resulted scoring and the types of the interaction observed were presented. Furthermore, (S)-dimethyl 2-(2-((S)-2-((R)-1-((S)-2-((S)-2-((S)-3-(4-chlorophenyl)-2-(1,3-dioxoisoindolin-2-yl)propanamido)-4-(methylthio)butanamido)-4-methylpentanoyl)pyrrolidine-2-carboxamido)-5-(3-((2,2,4,5,7-pentamethyl-2,3-dihydrobenzofuran-6-yl)sulfonyl)guanidino)pentanamido)acetamido)succinate (AB5) (compound with lowest binding affinity) and metformin were subjected to ADMET analysis and the resulted outcome were reported appropriately.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10432606 | PMC |
http://dx.doi.org/10.1016/j.dib.2023.109478 | DOI Listing |
Data Brief
October 2023
Computational Chemistry Research Laboratory, Industrial Chemistry Programme, Bowen University, Iwo, Osun State, Nigeria.
The angiotensin converting enzyme inhibiting activity of linear rgd-containing peptides was investigated using approach. The synthesized compound (parent compound) using experimental approach as well as its derivatives was subjected to computational examination using appropriate software. The investigated compounds were optimized using Spartan 14 while the docking study was executed via Pymol, AutoDock Tool, AutoDock Vina and discovery studio.
View Article and Find Full Text PDFActa Biomater
August 2022
College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, 310027, China; Institute of Zhejiang University-Quzhou, Quzhou, 324000 China. Electronic address:
Peptides are more versatile than small molecule drugs, but their specific bioaffinities are usually lower than their original native proteins because of the loss of preferred conformations. To overcome this key obstacle, we demonstrated a hydrogen bond-induced conformational constraint method to enhance the specific bioaffinities of peptides to achieve a high success rate by using linear RGD-containing peptides as a model of bioactive peptides. By performing molecular simulation, we found that the chemically immobilized linear CRGDS via cysteine (C) at the N-terminus on zwitterionic PAMAM G-5 can not only spontaneously restore the natural conformation of the RGD segment through the assistance of the dynamic hydrogen bond from serine (S) at the C-terminus of the peptide, but it can also narrow the distribution of all possible conformations.
View Article and Find Full Text PDFStructure
September 2019
Leukocyte Biology and Inflammation Program, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; Structural Biology Program, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; Division of Nephrology/Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA. Electronic address:
Targeting both integrins αVβ3 and α5β1 simultaneously appears to be more effective in cancer therapy than targeting each one alone. The structural requirements for bispecific binding of ligand to integrins have not been fully elucidated. RGD-containing knottin 2.
View Article and Find Full Text PDFToxins (Basel)
May 2019
Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA.
Snake venoms are attractive natural sources for drug discovery and development, with a number of substances either in clinical use or in research and development. These drugs were developed based on RGD-containing snake venom disintegrins, which efficiently antagonize fibrinogen activation of αIIbβ3 integrin (glycoprotein GP IIb/IIIa). Typical examples of anti-platelet drugs found in clinics are Integrilin (Eptifibatide), a heptapeptide derived from Barbourin, a protein found in the venom of the American Southeastern pygmy rattlesnake and Aggrastat (Tirofiban), a small molecule based on the structure of Echistatin, and a protein found in the venom of the saw-scaled viper.
View Article and Find Full Text PDFOrg Biomol Chem
August 2017
Department of Chemistry "U. Schiff", University of Florence, Via della Lastruccia 13, I-50019, Sesto Fiorentino, Italy.
The conformational analysis of linear and cyclic peptides incorporating 2,3-methanopipecolic acids (or Cyclopropane Pipecolic Acids, CPAs) as conformationally constrained α-amino acids is reported. Compared to peptides containing proline or pipecolic acid, a striking increase of the cis isomer (42-92%) around the CPA amide bond is observed, both in water and organic solvents, when these unnatural amino acids are embodied in linear amino acid sequences. The rotational barrier around the same bond in water was calculated, giving results comparable to that for the prolyl cis/trans isomerization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!