Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Magnetically manipulated medical robots are a promising alternative to current robotic platforms, allowing for miniaturization and tetherless actuation. Controlling such systems autonomously may enable safe, accurate operation. However, classical control methods require rigorous models of magnetic fields, robot dynamics, and robot environments, which can be difficult to generate. Model-free reinforcement learning (RL) offers an alternative that can bypass these requirements. We apply RL to a robotic magnetic needle manipulation system. Reinforcement learning algorithms often require long runtimes, making them impractical for many surgical robotics applications, most of which require careful, constant monitoring. Our approach first constructs a model-based simulation (MBS) on guided real-world exploration, learning the dynamics of the environment. After intensive MBS environment training, we transfer the learned behavior from the MBS environment to the real-world. Our MBS method applies RL roughly 200 times faster than doing so in the real world, and achieves a 6 mm root-mean-square (RMS) error for a square reference trajectory. In comparison, pure simulation-based approaches fail to transfer, producing a 31 mm RMS error. These results demonstrate that MBS environments are a good solution for domains where running model-free RL is impractical, especially if an accurate simulation is not available.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10438915 | PMC |
http://dx.doi.org/10.1109/tmrb.2022.3214426 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!