A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Control of Magnetic Surgical Robots With Model-Based Simulators and Reinforcement Learning. | LitMetric

Magnetically manipulated medical robots are a promising alternative to current robotic platforms, allowing for miniaturization and tetherless actuation. Controlling such systems autonomously may enable safe, accurate operation. However, classical control methods require rigorous models of magnetic fields, robot dynamics, and robot environments, which can be difficult to generate. Model-free reinforcement learning (RL) offers an alternative that can bypass these requirements. We apply RL to a robotic magnetic needle manipulation system. Reinforcement learning algorithms often require long runtimes, making them impractical for many surgical robotics applications, most of which require careful, constant monitoring. Our approach first constructs a model-based simulation (MBS) on guided real-world exploration, learning the dynamics of the environment. After intensive MBS environment training, we transfer the learned behavior from the MBS environment to the real-world. Our MBS method applies RL roughly 200 times faster than doing so in the real world, and achieves a 6 mm root-mean-square (RMS) error for a square reference trajectory. In comparison, pure simulation-based approaches fail to transfer, producing a 31 mm RMS error. These results demonstrate that MBS environments are a good solution for domains where running model-free RL is impractical, especially if an accurate simulation is not available.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10438915PMC
http://dx.doi.org/10.1109/tmrb.2022.3214426DOI Listing

Publication Analysis

Top Keywords

reinforcement learning
12
mbs environment
8
rms error
8
mbs
5
control magnetic
4
magnetic surgical
4
surgical robots
4
robots model-based
4
model-based simulators
4
simulators reinforcement
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!