Tomato is the most consumed vegetable crop worldwide, with excellent beneficial health properties and high content of vitamins, minerals, carotenoids, total antioxidants, and phenolic compounds. Hence, improving its genotypes is crucial to sustain its production and ensure food security, principally under the fast-growing worldwide population and abrupt global climate change. The present study aimed to explore the genotypic variability associated with specific characteristics in twenty-five diverse tomato genotypes. In addition, the relationships between growth, yield, and quality traits using both univariate (correlation coefficient, path analysis) and multivariate (principal component, principal coordinates, canonical variate) analysis methods were explored. The results indicated that the evaluated genotypes possessed highly significant variation. This is appropriate for future hybridization through tomato breeding programs. All evaluated genotypes demonstrated considerable potential to develop strong hybrid vigour for growth, yield, and quality characteristics. In particular, the genotypes LS009, LS011, and LS014 could be considered promising, high-yielding, and resistant to yellow leaf curl virus infestation (YLCV) disease parents for future breeding schemes. The number of fruits per plant, fruit diameter, and fruit weight proved strong positive relationships with fruit yield. Accordingly, these characteristics demonstrate their importance in improving fruit yield and could be exploited as indirect criteria for selecting high-yielding tomato genotypes through breeding programs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10432218 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e18958 | DOI Listing |
Background Fetal growth restriction (FGR) is a leading risk factor for stillbirth, yet the diagnosis of FGR confers considerable prognostic uncertainty, as most infants with FGR do not experience any morbidity. Our objective was to use data from a large, deeply phenotyped observational obstetric cohort to develop a probabilistic graphical model (PGM), a type of "explainable artificial intelligence (AI)", as a potential framework to better understand how interrelated variables contribute to perinatal morbidity risk in FGR. Methods Using data from 9,558 pregnancies delivered at ≥ 20 weeks with available outcome data, we derived and validated a PGM using randomly selected sub-cohorts of 80% (n = 7645) and 20% (n = 1,912), respectively, to discriminate cases of FGR resulting in composite perinatal morbidity from those that did not.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA.
Foxtail millet (Setaria italica L.) is nutritionally superior to other cereals of the family Poaceae, with the potential to perform better in marginal environments. In the present context of climate change, ecologically sound and low-input foxtail millet varieties can be chosen for agricultural sustainability.
View Article and Find Full Text PDFSci Rep
January 2025
Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, 66506, USA.
The increasing frequency of heat stress events due to climate change disrupts all stages of plant growth, significantly reducing yields, especially in crops like mung bean (Vigna radiata (L.) R. Wilczek).
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
Background: Immune checkpoint inhibitors targeting programmed cell death protein-1 (PD-1) are the first line of treatment for many solid tumors including melanoma. PD-1 blockade enhances the effector functions of melanoma-infiltrating CD8 T cells, leading to durable tumor remissions. However, 55% of patients with melanoma do not respond to treatment.
View Article and Find Full Text PDFJ Adv Res
January 2025
Department of Chinese Medicine Authentication, College of Pharmacy, Naval Medical University, No.325 Guohe Road, Shanghai 200433, China; Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University, No.1279 Sanmen Road, Shanghai 200434, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, No.325 Guohe Road, Shanghai 200433, China. Electronic address:
Background: Plants produce abundant natural products, among which are species-specific and diversified secondary metabolites that are essential for growth and development, as well as adaptation to adversity and ecology. Moreover, these secondary metabolites are extensively utilized in pharmaceuticals, fragrances, industrial materials, and more. WRKY transcription factors (TFs), as a family of TFs unique to plants, have significant functions in many plant life activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!