Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Peripheral nerve injuries persist as a major clinical issue facing the US population and can be caused by stretch, laceration, or crush injuries. Small nerve gaps are simple to treat, and the nerve stumps can be reattached with sutures. In longer nerve gaps, traditional treatment options consist of autografts, hollow nerve guidance conduits, and, more recently, manufactured fibrous scaffolds. These manufactured scaffolds often incorporate stem cells, growth factors, and/or extracellular matrix (ECM) proteins to better mimic the native environment but can have issues with homogenous cell distribution or uniformly oriented neurite outgrowth in scaffolds without fibrous alignment. Here, we utilize a custom device to fabricate collagen I hydrogels with aligned fibers and encapsulated adipose-derived mesenchymal stem cells (ASCs) for potential use as a peripheral nerve repair graft. Initial results of our scaffold system revealed significantly less cell viability in higher collagen gel concentrations; 3 mg/mL gels showed 84.8 ± 7.3% viable cells, compared to 6 mg/mL gels viability of 76.7 ± 9.5%. Mechanical testing of the 3 mg/mL gels showed a Young's modulus of 6.5 ± 0.8 kPa nearly matching 7.45 kPa known to support Schwann cell migration. Further analysis of scaffolds coupled with stretching revealed heightened angiogenic and factor secretion, ECM deposition, fiber alignment, and dorsal root ganglia (DRG) neurite outgrowth along the axis of fiber alignment. Our platform serves as an testbed to assess neuro-regenerative potential of ASCs in aligned collagen fiber scaffolds and may provide guidance on next-generation nerve repair scaffold design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10433000 | PMC |
http://dx.doi.org/10.1016/j.mtbio.2023.100762 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!