Improvement of the CO Sensitivity: HPTS-Based Sensors along with Zn@SnO and Sn@ZnO Additives.

ACS Omega

Center for Fabrication and Application of Electronic Materials, Dokuz Eylül University, Izmir 35210, Turkey.

Published: August 2023

Fluorescent pH-sensitive indicator dye, 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS), has become known as a preferred alternative for continuous and accurate monitoring of dissolved and/or gaseous CO in chemistry, medical, and biochemical research. The objective of this work is to enhance the HPTS dye's CO sensitivity in the presence of Zn@SnO and Sn@ZnO additive particles. Sol-gel synthesized metal oxide semiconductors (MOSs) were characterized using XRD, XPS, and SEM. The fluorophore dye and the MOS additives were embedded in the ethyl cellulose (EC) polymeric matrix to prepare the sensing thin films. The steady-state and decay kinetic measurements of the HPTS-based composites were obtained by PL spectroscopy for the concentration ranges of 0-100% p[CO]. As expected, the addition of MOSs improves the sensor characteristics, specifically its CO sensing ability, linear response range, and relative signal change compared to the free form of HPTS. The CO sensitivities of the HPTS-based thin films were found at 17.6, 23.2, and 40.9 for the undoped, Zn@SnO-doped, and Sn@ZnO-doped forms of the HPTS, respectively. Additionally, the response and recovery times of the HPTS-based sensor agent with Sn@ZnO were measured as 10 and 460 s, respectively. The obtained results demonstrate that materials composed of HPTS with MOSs are potential candidates for CO sensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10433486PMC
http://dx.doi.org/10.1021/acsomega.3c03708DOI Listing

Publication Analysis

Top Keywords

zn@sno sn@zno
8
thin films
8
hpts
5
improvement sensitivity
4
hpts-based
4
sensitivity hpts-based
4
hpts-based sensors
4
sensors zn@sno
4
sn@zno additives
4
additives fluorescent
4

Similar Publications

Improvement of the CO Sensitivity: HPTS-Based Sensors along with Zn@SnO and Sn@ZnO Additives.

ACS Omega

August 2023

Center for Fabrication and Application of Electronic Materials, Dokuz Eylül University, Izmir 35210, Turkey.

Fluorescent pH-sensitive indicator dye, 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS), has become known as a preferred alternative for continuous and accurate monitoring of dissolved and/or gaseous CO in chemistry, medical, and biochemical research. The objective of this work is to enhance the HPTS dye's CO sensitivity in the presence of Zn@SnO and Sn@ZnO additive particles. Sol-gel synthesized metal oxide semiconductors (MOSs) were characterized using XRD, XPS, and SEM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!