We developed a novel loop-mediated isothermal amplification (LAMP) method using DNA captured on polyacrylamide microparticles (PAMMPs) as templates (PAMMPs@DNA-LAMP) for rapid qualitative detection of genetically modified organisms (GMOs). Here, DNA was extracted by a fast and cost-effective method using PAMMPs. Four LAMP primers were designed for the PAMMPs@DNA-LAMP method to detect the cauliflower mosaic virus 35S (CaMV35S) promotor in GMOs. We thus developed this method for rapid extraction of DNA (5-10 min) and fast amplification of DNA within ∼30 min at a constant temperature of 63 °C. Moreover, the DNA captured by PAMMPs (PAMMPs@DNA) could be effectively detected by both conventional and quantitative PCR (qPCR) and LAMP. The PAMMPs@DNA-LAMP method was validated with high specificity, sensitivity, and performance for practical sample analysis. This assay detected 0.01% target sequences, which had a high specificity like qPCR and better than the conventional PCR (cPCR). Furthermore, PAMMPs@DNA-LAMP was successfully used to extract and detect DNA from food samples of the major crops (soybean, maize, rice, etc.). In summary, a novel PAMMPs@DNA-LAMP assay has been developed, which has higher sensitivity and spends less time than the cPCR detection using the conventional DNA extracted process. This method offers a novel approach for rapid detection of GMOs in the field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10433496 | PMC |
http://dx.doi.org/10.1021/acsomega.3c03567 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!