Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Single-atom catalysts (SACs), a novel kind of electrocatalysts with full metal utilization, have been developed as unique signal amplifiers in several sensing platforms. Herein, based on theoretical prediction of the oxygen reduction reaction (ORR) mechanism on different atom sites, we constructed dual-atomic-site catalysts (DACs), Fe/Mn-N-C, to catalyze luminol-dissolved oxygen electrochemiluminescence (ECL). Computational simulation indicated that the weak adsorption of OH* on a single Fe site was overcome by introducing Mn as the secondary metallic active site, resulting in a synergic dual-site cascade mechanism. The superior catalytic activity of Fe/Mn-N-C DACs for the ORR was proven by the highly efficient cathodic luminol ECL, surpassing the performance of single-site catalysts (SACs), Fe-N-C and Mn-N-C. Furthermore, the ECL system, enhanced by a cascade reaction, exhibited remarkable sensitivity to ascorbic acid, with a detection limit of 0.02 nM. This research opens up opportunities for enhancing both the ECL efficiency and sensing performance by employing a rational atomic-scale design for DACs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.3c00891 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!