A boy with a progressive neurologic decline harboring two coexisting mutations in KMT2D and VPS13D.

Brain Dev

Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Genomic Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan. Electronic address:

Published: November 2023

Introduction: Kabuki syndrome (KS) and spinocerebellar ataxia (SCA) are both rare conditions with neurodevelopmental abnormalities. Approaching a patient with complex phenotypes and differentiating the role of mutations may be beneficial but challenging in predicting the disease prognosis.

Case Presentation: A boy presented with progressive ataxia, developmental regression, and myoclonus since 4 years of age. Additional features included growth hormone deficiency, excessive body hair, dysmorphic facies, hypoparathyroidism, and bilateral sensorineural hearing impairment. Brain magnetic resonance imaging depicted T2-weighted hyperintensities over bilateral globus pallidus, thalamus, subcortical white matter, and brainstem. The results of tandem mass spectrometry, mitochondrial deletion, and mitochondrial DNA sequencing were inconclusive. Whole-exome sequencing (WES) on genomic DNA obtained from peripheral blood cells revealed a known pathogenic variant at KMT2D gene (c.5993A > G, p.Tyr1998Cys) related to KS and two compound heterozygous, likely pathogenic variants at VPS13D gene (c.908G > A, p.Arg303Gln and c.8561T > G, p.Leu2854Arg) related to autosomal recessive SCA type 4 (SCAR4).

Discussion: SCAR4 is mainly adult-onset, but a few pediatric cases have recently been reported with progressive gait instability and developmental delay. The VPS13D gene has been suggested to play a role in mitochondrial size, autophagy, and clearance, thus explaining the clinical and imaging phenotypes.

Conclusion: Our case showed a rare co-existence of KS and SCAR4, highlighting the utility of WES in atypical cases that a single-gene disease cannot fully explain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.braindev.2023.08.001DOI Listing

Publication Analysis

Top Keywords

vps13d gene
8
boy progressive
4
progressive neurologic
4
neurologic decline
4
decline harboring
4
harboring coexisting
4
coexisting mutations
4
mutations kmt2d
4
kmt2d vps13d
4
vps13d introduction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!