High-efficiency sensing systems for extremely hazardous chromium (Cr(III)) ions are important due to their detrimental effects on human health and the environment. We employed a spectrophotometric method combined with a smartphone (red, green, and blue (RGB) color ratio)-based detection platform to realize the quick, visually quantifiable in situ detection of Cr(III) ions using surface plasmon resonance (SPR)-aided colorimetry. For optical sensing nanoprobes, we synthesized the 2-Mercapto-5-methyl-1,3,4-thiadiazole (MMT)-modified gold nanoparticles (MMT-AuNPs) using a wet chemical method. By way of a coordination reaction, the Cr(III) ions induce the as-prepared MMT-AuNPs to aggregate and subsequently change the SPR wavelength band. The freshly synthesized MMT-AuNPs exhibited a wine-red color. While Cr(III) ions interact with the MMT-AuNPs, the color of the latter evolved from wine red to purple, thus facilitating visual monitoring. The SPR-relevant color change allowed the quantitative sensing of Cr(III) ions in the range of 40-128 nM, with the limit of detection of 6.93 nM when employing the spectrophotometric method and 12.4 nM when using the smartphone RGB color ratio. Furthermore, we developed the spectrophotometric technique that used the smartphone RGB color ratio for on-site analysis of Cr(III) ions in environmental water samples, indicating the possibility of its chemo-sensing applications for portable quantitative detection devices. Additionally, the catalytic performance of the MMT-AuNPs was demonstrated by the reduction of p-nitroaniline in the presence of sodium borohydride. It was interestingly unveiled that the MMT-AuNPs showed outstanding catalytic performance with a catalytic rate constant of 6.31 × 10 s.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.139838DOI Listing

Publication Analysis

Top Keywords

criii ions
24
rgb color
12
ions environmental
8
reduction p-nitroaniline
8
gold nanoparticles
8
spectrophotometric method
8
smartphone rgb
8
color ratio
8
catalytic performance
8
ions
7

Similar Publications

Liquid crystal sensor for Cr(III)-citrate detection via interfacial coagulation.

Anal Chim Acta

February 2025

Department of Chemistry, Tamkang University, New Taipei City, 25137, Taiwan. Electronic address:

Background: Trivalent chromium (Cr(III)) and its highly soluble carboxyl complexes, often discharged into the environment by industries such as electroplating, leather tanning, and textile manufacturing, present severe risks to human health and ecosystems due to their high toxicity. These compounds are notoriously difficult to detect and remove during wastewater treatment, as they can persist in aqueous environments. Consequently, there is a pressing need for the development of simple, cost-effective, and reliable methods for their detection, which can improve monitoring, facilitate timely interventions, and enhance environmental protection efforts.

View Article and Find Full Text PDF

In this study, kapok fiber (KF) a hollow and hydrophobic fiber, was modified with cetyltrimethylammonium bromide (CTAB) or cetylpyridinium chloride (CPC), rendering adsorbed amount of ∼0.75 × 10 mol/g. Small-angle X-ray scattering (SAXS) measurements of dry KF/CTAB and KF/CPC evidenced a periodic distance of ∼2.

View Article and Find Full Text PDF

Simple and Rapid HPLC-ICP-MS Method for the Simultaneous Determination of Cr(III) and Cr(VI) by Combining a 2,6-Pyridinedicarboxylic Acid Pre-Complexation Treatment.

Mass Spectrom (Tokyo)

December 2024

Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, Gakuen-Uegahara-1, Sanda, Hyogo 669-1330, Japan.

A simple and rapid analytical method was developed for the simultaneous determination of two chromium species, Cr(III) and Cr(VI), in the environmental waters by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). This study incorporated a chelating pretreatment with 2,6-pyridinedicarboxylic acid (PDCA) to convert Cr(III) species into a stable Cr(III)-PDCA anion complex, which was then separated from Cr(VI) oxyanion using an anion exchange column. Building on the fundamental analytical approach proposed by Shigeta .

View Article and Find Full Text PDF

A colorimetric and electrochemical dual-mode system for identifying and detecting varied Cr species based on fungus-like porous CoS nanosensor.

Talanta

April 2025

Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. Electronic address:

The differentiation of valence states plays a crucial role in determining the toxicity of chromium (Cr) in environmental samples. In this work, two modes of colorimetric and electrochemical analytical methods based on a fungus like porous CoS (FP CoS) nanosensor were developed for rapid, specific, and portable detection trace/ultra-trace chromium species (Cr(VI) and Cr(III)). The FP CoS exhibited peroxidase activity as a nanozyme for the colorimetric detection of Cr(VI), catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to a blue oxidation product (oxTMB) in the presence of Cr(VI) instead of unstable HO as an oxidizer at room temperature over existing methods.

View Article and Find Full Text PDF

Birnessite enhanced Cr(III) oxidation during subsurface geochemical processes: Role of Mn(III)-induced nonphotochemical reactive oxygen species.

Environ Pollut

February 2025

School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China.

Cr(III) oxidation by birnessite was the dominant geologic source of Cr(VI), which increases the environmental mobility and toxicity of Cr, threatening ecological safety. Photochemically hydroxyl radical (•OH) generated by birnessite was widely accepted to be the dominant reactive oxygen species (ROS) oxidating Cr(III). However, birnessite and Cr mainly co-exist in dark subsurface soils, with contribution of nonphotochemical ROS remaining unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!