Ras-homologous (Rho) guanosine triphosphatases (GTPases) are considered a central player in regulating various biological processes, extending to immune regulation. Perturbations in Rho GTPase signalling have been implicated in immune-related dysregulation, contributing to the development of autoimmunity. This study presents a scientometric analysis exploring the interlink between the Rho GTPase signalling system and autoimmunity, while also delving into the trends of past studies. A total of 967 relevant publications from 1990 to 2023 were retrieved from the Web of Science Core Collection database after throrough manual filtering of irrelevant articles. The findings show an upward trajectory in publications related to this field since 2006. Over the past three decades, the United States of America (41.68%) emerged as the primary contributor in advancing our understanding of the association between the Rho GTPase signalling system and autoimmunity. Research in autoimmunity has mainly centered around therapeutic interventions, with an emphasis on studying leukocyte (macrophage) and endothelial remodelling. Interestingly, within the domains of multiple sclerosis and rheumatoid arthritis, the current focus has been directed towards comprehending the role of RhoA, Rac1, and Cdc42. Notably, certain subfamilies of Rho (such as RhoB and RhoC), Rac (including Rac2 and RhoG), Cdc42 (specifically RhoJ), and other atypical Rho GTPases (like RhoE and RhoH) consistently demonstrating compelling link with autoimmunity, but still warrants emphasis in the future study. Hence, strategic manipulation of the Rho signalling system holds immense promise as a pivotal approach to addressing the global challenge of autoimmunity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2023.110855 | DOI Listing |
Cytoskeleton (Hoboken)
January 2025
Department of Life Science, Faculty of Science, Gakushuin University, Mejiro, Tokyo, Japan.
Cytokinesis in animal and fungal cells requires the contraction of actomyosin-based contractile rings formed in the division cortex of the cell during late mitosis. However, the detailed mechanism remains incompletely understood. Here, we aim to develop a novel cell-free system by encapsulating cell extracts obtained from fission yeast cells within lipid vesicles, which subsequently leads to the formation of a contractile ring-like structure inside the vesicles.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
High concentrations of neutrophil degranulation products in the plasma and thrombi are poor prognostic indicators in patients with acute ischemic stroke (AIS). This study aimed to identify candidate effectors capable of mediating neutrophil degranulation post-AIS, and to reveal their underlying epigenetic mechanisms. Microarrays and ChIP-seq were applied to analyze the neutrophils of patients with AIS.
View Article and Find Full Text PDFMol Genet Genomic Med
January 2025
Department of Pediatrics, Taihe County People's Hospital, Fuyang, Anhui, China.
Background: Developmental and epileptic encephalopathies (DEEs) are a heterogeneous group of brain disorders. Variants in the Rho-related BTB domain-containing 2 gene (RHOBTB2) can lead to DEE64, which is characterized by early-onset epilepsy, varying degrees of motor developmental delay and intellectual disability, microcephaly, and movement disorders. More than half of the variants are located at Arg483 and Arg511 within the BTB domain; however, the underlying mechanism of action of these hotspot variants remains unexplored.
View Article and Find Full Text PDFmBio
January 2025
Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
Many bacterial toxins exert their cytotoxic effects by enzymatically inactivating one or more cytosolic targets in host cells. To reach their intracellular targets, these toxins possess functional domains or subdomains that interact with and exploit various host factors and biological processes. Despite great progress in identifying many of the key host factors involved in the uptake of toxins, significant knowledge gaps remain as to how partially characterized and newly discovered microbial toxins exploit host factors or processes to intoxicate target cells.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.).
Background: Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!