A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of interferon-γ on the target cell tropism of nanoparticles. | LitMetric

Impact of interferon-γ on the target cell tropism of nanoparticles.

J Control Release

Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany. Electronic address:

Published: October 2023

Interferon-γ (IFN-γ) is well known to reduce the infectivity of viral pathogens by altering their tissue tropism. This effect is induced by upregulation of cholesterol 25-hydroxylase (CH25H). Given the similarity of viral pathogens and ligand-functionalized nanoparticles in the underlying strategy of receptor-mediated cell recognition, it appears conceivable that IFN-γ exceeds similar effects on nanoparticles. Concretely, IFN-γ-induced activation of CH25H could decrease nanoparticle avidity for target cells via depletion of clathrin-coated pits. We hypothesized that this effect would cause deterioration of target-cell specific accumulation of nanoparticles. To prove our hypothesis, we investigated the cell tropism of angiotensin II functionalized nanoparticles (NP) in a co-culture system of angiotensin II subtype 1 receptor (ATR) positive rat mesangial target cells (rMCs) and ATR-negative HeLa off-target cells. In the presence of IFN-γ we observed an up to 5-fold loss of target cell preference for NP. Thus, our in vitro results suggest a strong influence of IFN-γ on nanoparticle distribution, which is relevant in the context of nanotherapeutic approaches to cancer treatment, as IFN-γ is strongly expressed in tumors. For the target cell tropism of viruses, our results provide a conclusive hypothesis for the underlying mechanism behind non-directed viral distribution in the presence of IFN-γ.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2023.08.034DOI Listing

Publication Analysis

Top Keywords

target cell
12
cell tropism
12
viral pathogens
8
target cells
8
presence ifn-γ
8
ifn-γ
6
target
5
cell
5
nanoparticles
5
impact interferon-γ
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!