The cerebellum is known to play an important role in the coordination and timing of limb movements. The present study focused on how reach kinematics are affected by cerebellar lesions to quantify both the presence of motor impairment, and recovery of motor function over time. In the current study, 12 patients with isolated cerebellar stroke completed clinical measures of cognitive and motor function, as well as a visually guided reaching (VGR) task using the Kinarm exoskeleton at baseline (∼2 weeks), as well as 6, 12, and 24-weeks post-stroke. During the VGR task, patients made unassisted reaches with visual feedback from a central 'start' position to one of eight targets arranged in a circle. At baseline, 6/12 patients were impaired across several parameters of the VGR task compared to a Kinarm normative sample (n = 307), revealing deficits in both feed-forward and feedback control. The only clinical measures that consistently demonstrated impairment were the Purdue Pegboard Task (PPT; 9/12 patients) and the Montreal Cognitive Assessment (6/11 patients). Overall, patients who were impaired at baseline showed significant recovery by the 24-week follow-up for both VGR and the PPT. A lesion overlap analysis indicated that the regions most commonly damaged in 5/12 patients (42% overlap) were lobule IX and Crus II of the right cerebellum. A lesion subtraction analysis comparing patients who were impaired (n = 6) vs. unimpaired (n = 6) on the VGR task at baseline showed that the region most commonly damaged in impaired patients was lobule VIII of the right cerebellum (40% overlap). Our results lend further support to the notion that the cerebellum is involved in both feedforward and feedback control during reaching, and that cerebellar patients tend to recover relatively quickly overall. In addition, we argue that future research should study the effects of cerebellar damage on visuomotor control from a perception-action theoretical framework to better understand how the cerebellum works with the dorsal stream to control visually guided action.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropsychologia.2023.108662 | DOI Listing |
J Neuroeng Rehabil
September 2023
Graduate Program in Biomechanics and Movement Science (BIOMS), University of Delaware, 540 South College Ave., Newark, DE, 19713, USA.
Background: Intact sensorimotor function of the upper extremity is essential for successfully performing activities of daily living. After a stroke, upper limb function is often compromised and requires rehabilitation. To develop appropriate rehabilitation interventions, sensitive and objective assessments are required.
View Article and Find Full Text PDFNeuropsychologia
September 2023
Department of Psychology, MacEwan University, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada. Electronic address:
The cerebellum is known to play an important role in the coordination and timing of limb movements. The present study focused on how reach kinematics are affected by cerebellar lesions to quantify both the presence of motor impairment, and recovery of motor function over time. In the current study, 12 patients with isolated cerebellar stroke completed clinical measures of cognitive and motor function, as well as a visually guided reaching (VGR) task using the Kinarm exoskeleton at baseline (∼2 weeks), as well as 6, 12, and 24-weeks post-stroke.
View Article and Find Full Text PDFNeurorehabil Neural Repair
July 2022
Centre for Neuroscience Studies, 4257Queen's University, Kingston, ON, Canada.
Background: Cognitive and motor function must work together quickly and seamlessly to allow us to interact with a complex world, but their integration is difficult to assess directly. Interactive technology provides opportunities to assess motor actions requiring cognitive control.
Objective: To adapt a reverse reaching task to an interactive robotic platform to quantify impairments in cognitive-motor integration following stroke.
Parkinsons Dis
March 2022
Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
In addition to motor symptoms such as difficulty in movement initiation and bradykinesia, patients with Parkinson's disease (PD) display nonmotor executive cognitive dysfunction with deficits in inhibitory control. Preoperative psychological assessments are used to screen for impulsivity that may be worsened by deep brain stimulation (DBS) of the subthalamic nucleus (STN). However, it is unclear whether anti-Parkinson's therapy, such as dopamine replacement therapy (DRT) or DBS, which has beneficial effects on motor function, adversely affects inhibitory control or its domains.
View Article and Find Full Text PDFFront Hum Neurosci
May 2021
Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
Background: Kinarm Standard Tests (KSTs) is a suite of upper limb tasks to assess sensory, motor, and cognitive functions, which produces granular performance data that reflect spatial and temporal aspects of behavior (>100 variables per individual). We have previously used principal component analysis (PCA) to reduce the dimensionality of multivariate data using the Kinarm End-Point Lab (EP). Here, we performed PCA using data from the Kinarm Exoskeleton Lab (EXO), and determined agreement of PCA results across EP and EXO platforms in healthy participants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!