Purpose: To evaluate the predictive power of 2-[F]FDG PET/CT-derived radiomic signature in human epidermal growth factor receptor 2 (HER2) status determination for primary breast cancer (BC) with equivocal immunohistochemistry (IHC) results for HER2.
Methods: A total of 154 primary BC with equivocal IHC results for HER2 were retrospectively enrolled in the study. First, the following five conventional PET parameters (SUVmax, SUVmean, SUVpeak, MTV, TLG) were measured and compared between HER2-positive and HER2-negative cohorts. After quantitative radiomic features extraction and reduction, the least absolute shrinkage and selection operator (LASSO) algorithm was used to establish a radiomic signature model. Then, the area under the curve (AUCs) after a receiver operator characteristic (ROC) analysis, accuracy, sensitivity and specificity were calculated and used as the main outcomes. Finally, a total of 37 BC patients from an external institution were included to perform an external validation.
Results: All the five conventional PET parameters were unable to discriminate between HER2-positive and HER2-negative cohorts for BC (P = 0.104-0.544). Whereas, the developed radiomic signature model was potentially predictive of HER2 status with an of AUC 0.887 (95% confidence interval [CI], 0.824-0.950) in the training cohort and 0.766 (95% CI, 0.616-0.916) in the validation cohort, respectively. For external validation, the AUC for the external test cohort was 0.788 (95% CI, 0.633-0.944).
Conclusions: Radiomic signature based on 2-[F]FDG PET/CT images was capable of non-invasively predicting the HER2 status with a comparable ability to FISH assay, especially for those with equivocal IHC results for HER2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejrad.2023.111050 | DOI Listing |
Heliyon
January 2025
Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: Previous studies mostly use single-type features to establish a prediction model. We aim to develop a comprehensive prediction model that effectively identify patients with poor prognosis for single hepatocellular carcinoma (HCC) based on artificial intelligence (AI). : 236 single HCC patients were studied to establish a comprehensive prediction model.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Keimyung University School of Medicine, Daegu 42601, Republic of Korea.
Background/objectives: Accurate diagnosis is essential to avoid unnecessary procedures for thyroid incidentalomas (TIs). Advances in radiomics and machine learning applied to medical imaging offer promise for assessing thyroid nodules. This study utilized radiomics analysis on F-18 FDG PET/CT to improve preoperative differential diagnosis of TIs.
View Article and Find Full Text PDFEur Radiol
January 2025
Department of Medical Imaging, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China.
Objectives: To compare an MRI-based radiomics signature with the programmed cell death ligand 1 (PD-L1) expression score for predicting immunotherapy response in nasopharyngeal carcinoma (NPC).
Methods: Consecutive patients with NPC who received immunotherapy between January 2019 and June 2022 were divided into training (n = 111) and validation (n = 66) sets. Tumor radiomics features were extracted from pretreatment MR images.
BMC Cancer
January 2025
Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China.
Background: Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide. Various factors in the tumor environment (TME) can lead to the activation of endoplasmic reticulum stress (ERS), thereby affecting the occurrence and development of tumors. The objective of our study was to develop and validate a radiogenomic signature based on ERS to predict prognosis and systemic combination therapy response.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China.
Introduction: This study predicted HRD score and status based on intra- and peritumoral radiomics in patients with ovarian cancer (OC) for better guiding the use of PARPi in clinical.
Methods: A total of 106 and 95 patients with OC were included between January 2022 and November 2023 for predicting HRD score and status, respectively. Radiomics features were extracted and quantitatively analyzed from intra- and peri-tumor regions in the CT image.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!