The purpose of this study was to investigate into the effects of Se-chitosan and Na selenite supplementation on laying hen production performance, egg quality, egg Se concentration, microbial population, immunological response, antioxidant enzymes activity, and yolk fatty acid profile. Using a 2 × 2 factorial design, 168 27-wk-old laying hens were randomly divided into 4 treatment groups and 7 replications. Se source (Na selenite and Se-chitosan) and Se level (0.3 and 0.6 mg/kg) were used as treatments. Se-chitosan enhanced egg production percentage and egg mass (P < 0.05) when compared with Na selenite. There was an interaction, with 0.6 mg Se-chitosan/kg causing an increase in albumen height, Haugh unit, albumen index, and shell thickness of fresh eggs (P < 0.05). Se-chitosan increased yolk share, yolk color, and shape index of fresh eggs and shape index, albumen index, albumen height, Haugh unit, yolk color, shell thickness, and specific gravity of stored eggs (P < 0.05). The interaction showed that, 0.6 mg Se-chitosan/kg increased albumen Se concentration and decreased the level of malondialdehyde (MDA) in fresh egg yolk compared with 0.3 and 0.6 mg Na selenite/kg (P < 0.05). When compared with Na selenite, Se-chitosan increased the Se concentration in the yolk and decreased level of MDA in stored egg yolk (P < 0.01). When compared with Na selenite, Se-chitosan reduced coliforms (P < 0.01), increased lactic acid bacteria, and the lactic acid bacteria/coliform ratio (P < 0.05). Se-chitosan supplementation increased antibody response to sheep red blood cells and IgM titers and the activities of glutathione peroxidase and superoxide dismutase in plasma (P < 0.05). Furthermore, compared with Na selenite, supplementing diets with Se-chitosan decreased ∑ n-6 PUFA/∑ n-3 PUFA ratio (P < 0.01). In conclusion, Se-chitosan supplementation of laying hen feed improved production performance, egg quality, egg Se concentration, yolk lipid oxidation, microbial population, immune response, antioxidant enzymes activity, and yolk fatty acid profile, with 0.6 mg Se-chitosan/kg supplementation being optimal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458345PMC
http://dx.doi.org/10.1016/j.psj.2023.102983DOI Listing

Publication Analysis

Top Keywords

compared selenite
16
production performance
12
performance egg
12
egg quality
12
quality egg
12
microbial population
12
response antioxidant
12
antioxidant enzymes
12
fatty acid
12
selenite se-chitosan
12

Similar Publications

White-Seeded Culinary Poppy ( L.) Se Biofortification: Oil Quality, Fatty Acid Profile, and Seed Yield.

Plants (Basel)

December 2024

Department of Plant Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia.

The culinary poppy ( L.) has been used for centuries in everyday diets, especially for food, but also as a non-food source of health-promoting ingredients. In the present study, a field trial was set with white-seeded poppy varieties collected from farmers in Croatia.

View Article and Find Full Text PDF

Background: Antibiotic resistance in various microorganisms has become one of the most serious health problems worldwide. The use of nanoparticles in combination with conventional antibiotics is one of the recent efforts to overcome these challenges. This study aims to synthesize and evaluate the possibility of using amikacin-loaded selenium nanoparticles as antibacterial agent against multidrug-resistant , that causes bovine mastitis.

View Article and Find Full Text PDF

Introduction: Selenium nanoparticles (SeNPs) are recently emerging as promising anticancer agents because of their high bioavailability, low toxicity and remarkable anticancer activities. However, the application of SeNPs in anticancer has been limited due to instability. Herein, Capsaicin (Cap), a natural active compound found in chili peppers with favorable anticancer activity, was modified with SeNPs to prepare Cap-decorated SeNPs (Cap@SeNPs), and the antiproliferative effect and mechanism of Cap@SeNPs in HepG2 were investigated.

View Article and Find Full Text PDF

Selenium (Se) is a crucial trace element that demonstrates significant immunomodulatory effects, which are attributed to the variability in its valence states and metabolic pathways. To investigate the Se-related immunoregulatory effects, locust bean gum (LBG), a typical galactomannan, was selenized by employing deep eutectic solvents (DESs) as high-efficiency solvents to obtain Se-covalent modified LBG (SeLBGs) with similar molecular mass and different Se contents (SeLBG, 1049.57 and SeLBG, 4926.

View Article and Find Full Text PDF

A novel biosynthesis approach was used to develop zinc selenite (ZnSeO) catalysts from the plant extracts of Nephrolepis cordifolia (ZnSeO:NC) and Ziziphus jujube (ZnSeO:ZJ) using hydrothermal method. This study investigates the structural, morphological, and optical properties of pure and biosynthesized ZnSeO catalysts. X-ray diffraction (XRD) analysis confirms the presence of an orthorhombic phase in both catalyst types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!