The nucleocapsid (N) protein is a suitable candidate for early diagnosis of porcine epidemic diarrhea virus (PEDV). Here, we identified the linear B-cell epitopes of the PEDV N-protein by integrating a computational-experimental framework and constructed three-dimensional (3D) structure model of the N protein using the ColabFold program in Google Colaboratory. Furthermore, we prepared the monoclonal antibodies against the predicted epitopes and recombinant N protein, respectively, and selected pairing mAbs (named 9C4 and 3C5) to develop a double-antibody sandwich immunochromatographic test strip using CdSe/ZnS quantum dots (QDs)-labelled 9C4 and 3C5 as capture and detection antibodies, respectively. This strip can specifically detect PEDV within 10 min with a detection limit of less than 6.25 × 10 TCID/mL. In comparison with RT-PCR for testing 90 clinical samples, the relative sensitivity and specificity of the strip were found to be 98.0% and 100%, respectively, with a concordance rate of 98.9% and a kappa value of 0.978, indicating that QDs-ICTS is a reliable method for the application of PEDV detection in clinical samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2023.115660 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China; Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya, China; Zhejiang University-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, China. Electronic address:
Viral infections trigger inflammasome-mediated caspase-1 activation. Nevertheless, limited understanding exists regarding how viruses use the active caspase-1 to evade host immune response. Here, we use porcine epidemic diarrhea virus (PEDV) as a model of coronaviruses (CoVs) to illustrate the intricate regulation of CoVs to combat IFN-I signaling and pyroptosis.
View Article and Find Full Text PDFVirology
January 2025
Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Vaccinology and Immunotherapeutics, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada. Electronic address:
J Nanobiotechnology
November 2024
College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China.
Background: Porcine epidemic diarrhea virus (PEDV) infection and transmission pose a serious threat to the global swine industry. The search for a new host factor with anti-PEDV effect may be an effective potential target for the development of novel antiviral drugs. Interferon-induced transmembrane proteins (IFITMs) play a crucial role in the innate immune response triggered by viral infection, and it has been suggested that IFITMs can block the early stages of viral replication, but the mechanism of action is currently unclear.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
October 2024
State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
Front Immunol
October 2024
Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.
Introduction: The critical early stages of infection and innate immune responses to porcine epidemic diarrhea virus (PEDV) at the intestinal epithelium remain underexplored due to the limitations of traditional cell culture and animal models. This study aims to establish a porcine enteroid culture model to investigate potential differences in susceptibility to infection across segments of the porcine small intestine (duodenum, jejunum, and ileum).
Methods: Intestinal crypt cells from nursery pigs were cultured in Matrigel to differentiate into porcine enteroid monolayer cultures (PEMCs).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!