[Clinical importance of adenylate cyclase-activating polypeptide (PACAP)].

Orv Hetil

2 Semmelweis Egyetem, Általános Orvostudományi Kar, Anatómiai, Szövet- és Fejlődéstani Intézet Budapest, Tűzoltó u. 58., 1094 Magyarország.

Published: August 2023

The pituitary adenylate cyclase-activating polypeptide (PACAP) was isolated and characterized from sheep hypothalami. Its amino acid sequence, gene, receptors and receptor genes and its distribution in the mammalian organism were soon described. PACAP is a member of the secretin peptide family. Its closest relative is the vasoactive intestinal polypeptide (VIP). Its widespread occurrence suggests that it plays a significant role in physiological processes. With the aim of animal models, the role of PACAP was intensively investigated worldwide in a possible treatment of various diseases. The first part of this work contains the most important experimental data regarding the structure, genes and occurrence of the peptide and its receptors in mammalian body. In the second part, we overviewed the ever-increasing data on human material according to organ systems. The review contains the data where there is a chance to use PACAP for therapeutic purposes in the clinical practice. Determining the concentration of PACAP in the blood would help in establishing a clinical and differential diagnosis. In the future, there may be a possibility for non-invasive therapy of tumors expressing PACAP receptors. PACAP regulates the pituitary functions, stimulates vasopressin release, adrenalin secretion, insulin secretion. It is smooth muscle relaxant, immunosuppressant. PACAP is a neurotransmitter, it is neuroprotective in various diseases of the nervous system and cytoprotective in peripheral organs. PACAP inhibits apoptosis and the formation of pro-inflammatory factors and stimulates the anti-inflammatory factors and development of tumor cells. PACAP participates in regulating the daily rhythm of physiological functions. Orv Hetil. 2023; 164(33): 1300-1310.

Download full-text PDF

Source
http://dx.doi.org/10.1556/650.2023.32833DOI Listing

Publication Analysis

Top Keywords

pacap
10
adenylate cyclase-activating
8
cyclase-activating polypeptide
8
[clinical adenylate
4
polypeptide pacap]
4
pacap] pituitary
4
pituitary adenylate
4
polypeptide pacap
4
pacap isolated
4
isolated characterized
4

Similar Publications

Neural Plasticity in Migraine Chronification.

Eur J Neurosci

January 2025

Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, Plock, Poland.

Chronic migraine (CM) is the ultimate and most burdensome form of the transformation from episodic migraine (EM), called chronification. The mechanism behind migraine chronification is poorly known and difficult to explore as CM has the same spectrum of pathogenesis as EM and the EM-CM transition is bidirectional. Central sensitization (CS) is a key phenomenon in migraine: its mechanisms include disturbed neural plasticity, which is the ability of the nervous system to adapt to endo- and exogenous changes.

View Article and Find Full Text PDF

Introduction: Migraine is a disabling neurological disorder with a complex neurobiology. It appears as a cyclic disorder of sensory processing, affecting multiple systems beyond nociception. Overlapping mechanisms, including dysfunctional processing of sensory input from brain structures are involved in the generation of attacks.

View Article and Find Full Text PDF

In 2024, therapeutic and diagnostic advancements are shaping the field of neurology. Three new drugs show promise for treating myasthenia gravis and chronic inflammatory demyelinating polyneuropathy. A new classification for Parkinson's disease has been proposed, while a neuroprosthesis is improving gait in advanced stages.

View Article and Find Full Text PDF

Background And Purpose: Pituitary adenylate cyclase activating polypeptide (PACAP) is a human migraine trigger that is being targeted for migraine. The δ-opioid receptor (δ-receptor) is a novel target for the treatment of migraine, but its mechanism remains unclear. The goals of this study were to develop a mouse PACAP-headache model using clinically significant doses of PACAP; determine the effects of δ-receptor activation in this model; and investigate the co-expression of δ-receptors, PACAP and PACAP-PAC1 receptor.

View Article and Find Full Text PDF

PAC1 Agonist Maxadilan Reduces Atherosclerotic Lesions in Hypercholesterolemic ApoE-Deficient Mice.

Int J Mol Sci

December 2024

Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037 Marburg, Germany.

A possible involvement of immune- and vasoregulatory PACAP signaling at the PAC1 receptor in atherogenesis and plaque-associated vascular inflammation has been suggested. Therefore, we tested the PAC1 receptor agonist Maxadilan and the PAC1 selective antagonist M65 on plaque development and lumen stenosis in the ApoE atherosclerosis model for possible effects on atherogenesis. Adult male ApoE mice were fed a cholesterol-enriched diet (CED) or standard chow (SC) treated with Maxadilan, M65 or Sham.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!