Ongoing climate change will both profoundly impact land-use (e.g., changes in crop species or cultivar and cropping practices) and abiotic factors (e.g., moisture and temperature), which will in turn alter plant-microorganism interactions in soils, including soil-borne pathogens (i.e., plant pathogenic bacteria, fungi, oomycetes, viruses, and nematodes). These pathogens often cause soil-borne disease complexes, which, due to their complexity, frequently remain undiagnosed and unmanaged, leading to chronic yield and quality losses. Root exudates are a complex group of organic substances released in the rhizosphere with potential to recruit, repel, stimulate, inhibit, or kill other organisms, including the detrimental ones. An improved understanding of how root exudates affect interspecies and/or interkingdom interactions in the rhizosphere under ongoing climate change is a prerequisite to effectively manage plant-associated microbes, including those causing diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tim.2023.07.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!