As a potent endogenous regulator of homeostasis, the circadian time-keeping system synchronizes internal physiology to periodic changes in the external environment to enhance survival. Adapting endogenous rhythms to the external time is accomplished hierarchically with the central pacemaker located in the suprachiasmatic nucleus (SCN) signaling the hypothalamus-pituitary-adrenal (HPA) axis to release hormones, notably cortisol, which help maintain the body's circadian rhythm. Given the essential role of HPA-releasing hormones in regulating physiological functions, including immune response, cell cycle, and energy metabolism, their daily variation is critical for the proper function of the circadian timing system. In this review, we focus on cortisol and key fundamental properties of the HPA axis and highlight their importance in controlling circadian dynamics. We demonstrate how systems-driven, mathematical modeling of the HPA axis complements experimental findings, enhances our understanding of complex physiological systems, helps predict potential mechanisms of action, and elucidates the consequences of circadian disruption. Finally, we outline the implications of circadian regulation in the context of personalized chronotherapy. Focusing on the chrono-pharmacology of synthetic glucocorticoids, we review the challenges and opportunities associated with moving toward personalized therapies that capitalize on circadian rhythms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10840710 | PMC |
http://dx.doi.org/10.1016/j.xphs.2023.08.005 | DOI Listing |
J Biochem Mol Toxicol
February 2025
Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, People's Republic of China.
The coexistence of Alzheimer's disease (AD) and chronic pain (CP) in the elderly population has been extensively documented, and a growing body of evidence supports the potential interconnections between these two conditions. This comprehensive review explores the mechanisms by which CP may contribute to the development and progression of AD, with a particular focus on neuroinflammatory pathways and the role of microglia, as well as the activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. The review proposes that prolonged pain processing in critical brain regions can dysregulate the activity of the NLRP3 inflammasome within microglia, leading to the overproduction of pro-inflammatory cytokines and excessive oxidative stress in these regions.
View Article and Find Full Text PDFCurr Neuropharmacol
January 2025
Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy.
Post-Traumatic Stress Disorder (PTSD) is mainly characterized by dysregulated fear re- sponses, including hyperarousal and intrusive re-experiencing of traumatic memories. This work delves into the intricate interplay between abnormal fear responses, cortisol dysregulation, and the Hypothalamic-Pituitary-Adrenal (HPA) axis, elucidating their role in the manifestation of PTSD. Giv- en the persistent nature of PTSD symptoms and the limitations of conventional therapies, innovative interventions are urgently needed.
View Article and Find Full Text PDFMol Syst Biol
January 2025
Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel.
Elevated cortisol in chronic stress and mood disorders causes morbidity including metabolic and cardiovascular diseases. There is therefore interest in developing drugs that lower cortisol by targeting its endocrine pathway, the hypothalamic-pituitary-adrenal (HPA) axis. However, several promising HPA-modulating drugs have failed to reduce long-term cortisol in mood disorders, despite effectiveness in other hypercortisolism conditions such as Cushing's syndrome.
View Article and Find Full Text PDFPsychoneuroendocrinology
January 2025
School of Sport, Exercise and Health Sciences, Loughborough University, United Kingdom.
Dysregulation of hypothalamic-pituitary-adrenal axis (HPA axis) and of the autonomic nervous system may link stress throughout the life course with poorer health. This study aims to investigate whether multiple adverse childhood experiences have a long-term impact on markers of these systems - cortisol secretion and heart rate variability - in adulthood. Data were from the Whitehall II cohort study.
View Article and Find Full Text PDFJ Xenobiot
January 2025
Laboratory of Toxicology, Department of Pharmacological and Biomolecular Science, University of Milan, Via Balzaretti 9, 20133 Milan, Italy.
Endocrine-disrupting chemicals (EDCs) are natural or synthetic substances that are able to interfere with hormonal systems and alter their physiological signaling. EDCs have been recognized as a public health issue due to their widespread use, environmental persistence and the potential levels of long-term exposure with implications in multiple pathological conditions. Their reported adverse effects pose critical concerns about their use, warranting their strict regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!