Arteriovenous malformations (AVMs) are high-pressure, low-resistance arterial-venous shunts without intervening capillaries. Up to 60% of AVMs present with an intracranial hemorrhage; however, noninvasive neuroimaging has increasingly diagnosed incidental AVMs. AVM management depends on weighing the lifetime rupture risk against the risks of intervention. Although AVM rupture risk relies primarily on angioarchitectural features, measuring hemodynamic flow is gaining traction. Accurate understanding of AVM hemodynamic flow parameters will help endovascular neurosurgeons and interventional neuroradiologists stratify patients by rupture risk and select treatment plans. This review examines various neuroimaging modalities and their capabilities to quantify AVM flow, as well as the relationship between AVM flow and rupture risk. Quantitative hemodynamic studies on the relationship between AVM flow and rupture risk have not reached a clear consensus; however, the preponderance of data suggests that higher arterial inflow and lower venous outflow in the AVM nidus contribute to increased hemorrhagic risk. Future studies should consider using larger sample sizes and standardized definitions of hemodynamic parameters to reach a consensus. In the meantime, classic angioarchitectural features may be more strongly correlated with AVM rupture than the amount of blood flow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wneu.2023.08.047 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!