Predicting Incident Adenocarcinoma of the Esophagus or Gastric Cardia Using Machine Learning of Electronic Health Records.

Gastroenterology

Veterans Affairs Center for Clinical Management Research, Lieutenant Colonel Charles S. Kettles Veterans Affairs Medical Center, Ann Arbor, Michigan; Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan; Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, Michigan.

Published: December 2023

Background & Aims: Tools that can automatically predict incident esophageal adenocarcinoma (EAC) and gastric cardia adenocarcinoma (GCA) using electronic health records to guide screening decisions are needed.

Methods: The Veterans Health Administration (VHA) Corporate Data Warehouse was accessed to identify Veterans with 1 or more encounters between 2005 and 2018. Patients diagnosed with EAC (n = 8430) or GCA (n = 2965) were identified in the VHA Central Cancer Registry and compared with 10,256,887 controls. Predictors included demographic characteristics, prescriptions, laboratory results, and diagnoses between 1 and 5 years before the index date. The Kettles Esophageal and Cardia Adenocarcinoma predictioN (K-ECAN) tool was developed and internally validated using simple random sampling imputation and extreme gradient boosting, a machine learning method. Training was performed in 50% of the data, preliminary validation in 25% of the data, and final testing in 25% of the data.

Results: K-ECAN was well-calibrated and had better discrimination (area under the receiver operating characteristic curve [AuROC], 0.77) than previously validated models, such as the Nord-Trøndelag Health Study (AuROC, 0.68) and Kunzmann model (AuROC, 0.64), or published guidelines. Using only data from between 3 and 5 years before index diminished its accuracy slightly (AuROC, 0.75). Undersampling men to simulate a non-VHA population, AUCs of the Nord-Trøndelag Health Study and Kunzmann model improved, but K-ECAN was still the most accurate (AuROC, 0.85). Although gastroesophageal reflux disease was strongly associated with EAC, it contributed only a small proportion of gain in information for prediction.

Conclusions: K-ECAN is a novel, internally validated tool predicting incident EAC and GCA using electronic health records data. Further work is needed to validate K-ECAN outside VHA and to assess how best to implement it within electronic health records.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11013733PMC
http://dx.doi.org/10.1053/j.gastro.2023.08.011DOI Listing

Publication Analysis

Top Keywords

electronic health
16
health records
16
predicting incident
8
gastric cardia
8
machine learning
8
cardia adenocarcinoma
8
gca electronic
8
internally validated
8
nord-trøndelag health
8
health study
8

Similar Publications

The Crimean Congo virus has been reported to be a part of the spherical RNA-enveloped viruses from the Bunyaviridae family. Crimean Congo fever (CCHF) is a fatal disease with having fatality rate of up to 40%. It is declared endemic by the World Health Organization.

View Article and Find Full Text PDF

Ventilation and features of the lung environment dynamically alter modeled intrapulmonary aerosol exposure from inhaled electronic cigarettes.

Sci Rep

December 2024

Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1690, USA.

Electronic cigarettes (e-cigs) fundamentally differ from tobacco cigarettes in their generation of liquid-based aerosols. Investigating how e-cig aerosols behave when inhaled into the dynamic environment of the lung is important for understanding vaping-related exposure and toxicity. A ventilated artificial lung model was developed to replicate the ventilatory and environmental features of the human lung and study their impact on the characteristics of inhaled e-cig aerosols from simulated vaping scenarios.

View Article and Find Full Text PDF

Natural honey is enriched with essential and beneficial nutrients. This study aimed to investigate the melliferous flora microscopic techniques and assess the biochemical properties of honey. Flavonoid and phenolic contents in honey samples were analyzed via colorimetric and Folin-Ciocalteu methods and the alpha-amylase, reducing power, and minerals using Pull's and spectroscopy methods.

View Article and Find Full Text PDF

Prognostic role of aetiological agent vs. clinical pattern in candidates to lead extraction for cardiac implantable electronic device infections.

Sci Rep

December 2024

Department of Medical and Surgical Sciences, Institute of Cardiology, University of Bologna, Policlinico S.Orsola-Malpighi, via Massarenti 9, Bologna, 40138, Italy.

Cardiac implantable electronic devices infections (CIEDI) are associated with poor survival despite the improvement in transvenous lead extraction (TLE). Aetiology and systemic involvement are driving factors of clinical outcomes. The aim of this study was to explore their contribute on overall mortality.

View Article and Find Full Text PDF

E-cigarette/vaping-associated lung injury (EVALI) is strongly associated with vitamin E acetate and often occurs with concomitant tetrahydrocannabinol (THC) use. To uncover pathways associated with EVALI, we examined cytokines, transcriptomic signatures, and lipidomic profiles in bronchoalveolar lavage fluid (BALF) from THC-EVALI patients. At a single center, we prospectively enrolled mechanically ventilated patients with EVALI from THC-containing products (N = 4) and patients with non-vaping acute lung injury and airway controls (N = 5).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!