The use of arsenic (As) for various industrial and agricultural applications has led to worldwide environmental contamination. Phytoremediation using hyperaccumulators is a sustainable soil As mitigation strategy. Microbial processes play an important role in the tolerance and uptake of trace elements such as in plants. The rhizospheric and endophytic microbial communities are responsible for accelerating the mobility of trace elements around the roots and the production of plant growth-promoting compounds and enzymes. Several studies have reported that the As hyperaccumulator, Pteris vittata L. (PV) influences the microbial community in its rhizosphere and roots. Deciphering the differences in the microbiomes of hyperaccumulators and non-accumulators is crucial in understanding the mechanism of hyperaccumulation. We hypothesized that there are significant differences in the microbiome of roots, rhizospheric soil, and bulk soil between the hyperaccumulator PV and a non-accumulator of the same genus, Pteris ensiformis Burm. (PE), and that the differential recruitment of bacterial communities provides PV with an advantage in As contaminated soil. We compared root endophytic, rhizospheric, and bulk soil microbial communities between PV and PE species grown in As-contaminated soil in a greenhouse setting. There was a significant difference (p < 0.001) in the microbiome of the three compartments between the ferns. Differential abundance analysis showed 328 Amplicon Sequence Variants (ASVs) enriched in PV compared to 172 in PE. The bulk and rhizospheric soil of both ferns were abundant in As-resistant genera. However, As-tolerant root endophytic genera were present in PV but absent in PE. Our findings show that there is a difference between the bacterial composition of an As hyperaccumulator and a non-accumulator species grown in As-contaminated soil. These differences need to be further explored to develop strategies for improving the efficiency of metal uptake in plants growing in As polluted soil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.139812 | DOI Listing |
ISME Commun
January 2025
Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
, renowned for its ability to hyperaccumulate arsenic, presents a promising solution to the escalating issue of global soil arsenic contamination. This fern cultivates a unique underground microbial community to enhance its environmental adaptability. However, our understanding of the assembly process and the long-term ecological impacts of this community remains limited, hindering the development of effective soil remediation strategies.
View Article and Find Full Text PDFFront Plant Sci
November 2024
Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China.
Arbuscular mycorrhizal fungi (AMF) have been widely shown to significantly promote the growth and recovery of L. growth and repair under arsenic stress; however, little is known about the molecular mechanisms by which AMF mediate the efficient uptake of arsenic in this species. To understand how AMF mediate arsenic metabolism under arsenic stress, we performed root transcriptome analysis before and after () colonization.
View Article and Find Full Text PDFNat Commun
November 2024
Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
Heavy metal contamination poses an escalating global challenge to soil ecosystems, with hyperaccumulators playing a crucial role in environmental remediation and resource recovery. The enrichment of diazotrophs and resulting nitrogen accumulation promoted hyperaccumulator growth and facilitated phytoremediation. Nonetheless, the regulatory mechanism of hyperaccumulator biological nitrogen fixation has remained elusive.
View Article and Find Full Text PDFJ Hazard Mater
October 2023
Graduate School of Environmental Studies, Tohoku University, Sendai, Japan. Electronic address:
Microbiol Resour Announc
December 2024
Graduate School of Environmental Studies (GSES), Tohoku University, Sendai, Japan.
strain m318 is an arsenite-oxidizing rhizobacterium isolated from the rhizosphere of an arsenic hyperaccumulator plant, beneficial for arsenic phytoremediation. Here, we report the complete genome sequence of this strain, which consists of a circular chromosome assembled using long reads sequenced on Nanopore and polished with Illumina paired-end reads.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!