Amorphous solid dispersions of curcumin in a poly(ester amide): Antiplasticizing effect on the glass transition and macromolecular relaxation dynamics, and controlled release.

Int J Pharm

Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, E-08019 Barcelona, Catalonia, Spain; Grup de Caracterització de Materials, Departament de Física, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Catalonia, Spain. Electronic address:

Published: September 2023

In order to exploit the pharmacological potential of natural bioactive molecules with low water solubility, such as curcumin, it is necessary to develop formulations, such as amorphous polymer dispersions, which allow a constant release rate and at the same time avoid possible toxicity effects of the crystalline form of the molecule under scrutiny. In this study, polymer dispersions of curcumin were obtained in PADAS, a biodegradable semicrystalline copolymer based on 1,12-dodecanediol, sebacic acid and alanine. The dispersions were fully characterized by means of differential scanning calorimetry and broadband dielectric spectroscopy, and the drug release profile was measured in a simulated body fluid. Amorphous homogeneous binary dispersions were obtained for curcumin mass fraction between 30 and 50%. Curcumin has significantly higher glass transition temperature T (≈ 347 K) than the polymer matrix (≈274-277 K depending on the molecular weight), and dispersions displayed T's intermediate between those of the pure amorphous components, implying that curcumin acts as an effective antiplasticizer for PADAS. Dielectric spectroscopy was employed to assess the relaxation dynamics of the binary dispersion with 30 wt% curcumin, as well as that of each (amorphous) component separately. The binary dispersion was characterized by a single structural relaxation, a single Johari-Goldstein process, and two local intramolecular processes, one for each component. Interestingly, the latter processes scaled with the T of the sample, indicating that they are viscosity-sensitive. In addition, both the pristine polymer and the dispersion exhibited an interfacial Maxwell-Wagner relaxation, likely due to spatial heterogeneities associated with phase disproportionation in this polymer. The release of curcumin from the dispersion in a simulated body fluid followed a Fickian diffusion profile, and 51% of the initial curcumin content was released in 48 h.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2023.123333DOI Listing

Publication Analysis

Top Keywords

dispersions curcumin
12
curcumin
9
glass transition
8
relaxation dynamics
8
polymer dispersions
8
dielectric spectroscopy
8
simulated body
8
body fluid
8
binary dispersion
8
dispersions
6

Similar Publications

Purpose: This study aimed to synthesize curcumin-modified selenium (Cur/Se) nanoparticles via a simple and green method for tumour treatment and explore their effects on the gut microbiota.

Methods: Curcumin was applied as a reducing and capping agent for the construction of Cur/Se nanoparticles with Tween 80 as a stabilizer. The drug release behaviour and DPPH and ABTS radical scavenging activities of the Cur/Se nanoparticles were detected.

View Article and Find Full Text PDF

Esterified Lignin Nanoparticles for Targeted Chemical Delivery in Plant Protection.

ACS Appl Mater Interfaces

December 2024

Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden.

There is a growing demand for biobased functional materials that can ensure targeted pesticide delivery and minimize active ingredient loss in the agricultural sector. In this work, we demonstrated the use of esterified lignin nanoparticles (ELNPs) as carriers and controlled-release agents of hydrophobic compounds. Curcumin was selected as a hydrophobic model compound and was incorporated during ELNP fabrication with entrapment efficiencies exceeding 95%.

View Article and Find Full Text PDF

Bacterial cellulose (BC) has earned a well-defined place among biopolymers due to its unique physicochemical properties. Unfortunately, native BC lacks antimicrobial and antioxidant properties. To address this limitation, many BC-based nanocomposites with antimicrobial properties have been developed, primarily for applications in the biomedical field, but also for use in food packaging.

View Article and Find Full Text PDF

Solid dispersions as effective curcumin vehicles to obtain k-carrageenan functional films for olive oil preservation.

Int J Biol Macromol

December 2024

CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal. Electronic address:

Synthetic packaging materials offer cost efficiency and performance but pose environmental risks. This study explores sustainable alternatives by developing k-carrageenan (KC) films functionalized with curcumin, using solid dispersions (SDs) to improve curcumin's compatibility, addressing the challenge of incorporating hydrophobic functionalities into hydrophilic film matrices. Films with varying curcumin content (1-20 wt%; KC1-KC20) were compared to a base film without curcumin (KC0) regarding water solubility, vapor permeability, water contact angle, and tensile properties.

View Article and Find Full Text PDF

Even though fingerprints remain one of the most reliable methods of identification, they are often lost during the recovery process. Accurate fingerprint recognition depends on the contrast between the ridges and substrate. On tough surfaces, such as glossy, colorful, and patterned materials, the contrast is harder to establish.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!