Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 177
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 177
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 251
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1037
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3155
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Titanium gypsum (TG) is rarely used to produce α-hemihydrate gypsum (α-HH) because of its poor crystallinity and high impurity and moisture contents. Here, a method is proposed to prepare α - HH by adjusting the reaction temperature, CaCl solution concentration and maleic acid dosage based on acid leaching and heat-treated TG as raw material. The effect of maleic acid and Fe ions on the preparation of α-HH were systematically analyzed using density functional theory (DFT) and typical materials characterization methods, X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). Under the optimal conditions (CaCl concentration of 23 % and reaction temperature of 95 °C), the maleic acid is chemically adsorbed on the crystal surfaces of α-HH, the strongest adsorption is in the (111) surface. Increasing the maleic acid concentration from 0 to 0.15 % decreased the aspect ratio of the α-HH crystals from 8.26 to 0.96, respectively, where the optimal dosage was 0.1 %. The theoretical results proved that the substitution energy of Fe was greater than that of Ca, and Fe ions can spontaneously enter the α-HH lattice to replace Ca ions. Furthermore, the adsorption energy of maleic acid on the (111) surface increased after the substitution of Fe to generate a synergistic effect that hinders α-HH growth along the c-axis, resulting in the preferred morphology. The results of this study provide a new method for using waste TG to produce a high-value-added product.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.166405 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!