Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
8-oxoguanine (8-oxoG) based DNA damage is the most common type of DNA damage which greatly affect gene expression. Therefore, accurate quantification of 8-oxoG based DNA damage is of high clinical significance. However, current methods for 8-oxoG detection struggle to balance convenience, low cost, and sensitivity. Herein, we have proposed and investigated the shortened crRNA mode of CRISPR-Cas12a system and greatly enhanced its signal-to-noise ratio. Taking advantages of the shortened crRNA mode, we further developed a CRISPR-enhanced structure-switching aptamer assay (CESA) for 8-oxoG. The analytical performance of CESA was thoroughly investigated via detecting free 8-oxoG and 8-oxoG on gDNA. The CESA displayed impressive sensitivity for free 8-oxoG, with detection and quantification limits of 32.3 pM and 0.107 nM. These limits modestly rose to 64.5 pM and 0.215 nM when examining 8-oxoG on gDNA. To demonstrate the clinical practicability and significance of the CESA system, we further applied it to measuring 8-oxoG levels in 7 plasma samples (Cervical carcinoma, 11.87 ± 0.69 nM VS. Healthy control, 2.66 ± 0.42 nM), 24 seminal plasma samples (Asthenospermia, 22.29 ± 7.48 nM VS. Normal sperm, 9.75 ± 3.59 nM), 10 breast-tissue gDNA samples (Breast cancer, 2.77 ± 0.63 nM/μg VS. Healthy control, 0.41 ± 0.09 nM/μg), and 24 sperm gDNA samples (Asthenospermia, 28.62 ± 4.84 VS. Normal sperm, 16.67 ± 3.31). This work not only proposes a novel design paradigm of shortened crRNA for developing CRISPR-Cas12a based biosensors but also offers a powerful tool for detecting 8-oxoG based DNA damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2023.115588 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!