Background: Members of the sulfotransferase superfamily (SULT) influence the activity of a wide range of hormones, neurotransmitters, metabolites and xenobiotics. However, their roles in developmental processes are not well characterized even though they are expressed during embryogenesis. We previously found in a microarray screen that Six1 up-regulates LOC100037047, which encodes XB5850668.L, an uncharacterized sulfotransferase.
Results: Since Six1 is required for patterning the embryonic ectoderm into its neural plate, neural crest, preplacodal and epidermal domains, we used loss- and gain-of function assays to characterize the role of XB5850668.L during this process. Knockdown of endogenous XB5850668.L resulted in the reduction of epidermal, neural crest, cranial placode and otic vesicle gene expression domains, concomitant with neural plate expansion. Increased levels had minimal effects, but infrequently expanded neural plate and neural crest gene domains, and infrequently reduced cranial placode and otic vesicle gene domains. Mutation of two key amino acids in the sulfotransferase catalytic domain required for PAPS binding and enzymatic activity tended to reduce the effects of overexpressing the wild-type protein.
Conclusions: Our analyses indicates that XB5850668.L is a member of the SULT2 family that plays important roles in patterning the embryonic ectoderm. Some aspects of its influence likely depend on sulfotransferase activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10842325 | PMC |
http://dx.doi.org/10.1002/dvdy.648 | DOI Listing |
Sci Rep
December 2024
School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.
The two-dimensional (2D) irregular packing problem is a combinatorial optimization problem with NP-complete characteristics, which is common in the production process of clothing, ships, and plate metals. The classic packing solution is a hybrid algorithm based on heuristic positioning and meta-heuristic sequencing, which has the problems of complex solving rules and high time cost. In this study, the similarity measurement method based on the twin neural network model is used to evaluate the similarity of pieces in the source task and the target task.
View Article and Find Full Text PDFBiomimetics (Basel)
November 2024
College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
In robotic-assisted laminectomy decompression, stable and precise vertebral plate cutting remains challenging due to manual dependency and the absence of adaptive skill-learning mechanisms. This paper presents an advanced robotic vertebral plate-cutting system that leverages patient-specific anatomical variations and replicates the surgeon's cutting technique through a trajectory parameter prediction model. A spatial mapping relationship between artificial and patient vertebrae is first established, enabling the robot to mimic surgeon-defined trajectories with high accuracy.
View Article and Find Full Text PDFBMC Res Notes
December 2024
School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
Objective: The Polycomb Repressive Complex 2 (PRC2) regulates neural stem cell behaviour during development of the cerebral cortex, yet how the loss of PRC2 developmentally influences cell identity in the mature brain is poorly defined. Using a mouse model in which the PRC2 gene Embryonic ectoderm development (Eed) was conditionally deleted from the developing mouse dorsal telencephalon, we performed single nuclei RNA sequencing (snRNA-seq) on the cortical plate of an adult heterozygote Eed knockout mouse and an adult homozygote Eed knockout mouse compared to a littermate control. This work was part of a larger effort to understand consequences of mutations to PRC2 within the mature brain.
View Article and Find Full Text PDFJ Neurosci
December 2024
Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Avenue Laennec, 80036 Amiens Cedex, France
Rhythm perception and synchronization to periodicity hold fundamental neurodevelopmental importance for language acquisition, musical behavior, and social communication. Rhythm is omnipresent in the fetal auditory world and newborns demonstrate sensitivity to auditory rhythmic cues. During the last trimester of gestation, the brain begins to respond to auditory stimulation and to code the auditory environment.
View Article and Find Full Text PDFElife
December 2024
Center for Genetic Medicine Research at the Children's National Hospital, Washington, United States.
A new single-cell atlas of gene expression provides insights into the patterning of the neural plate of mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!