AI Article Synopsis

  • The study compared the efficacy of computed tomography (CT) and cardiac magnetic resonance (CMR) in measuring myocardial extracellular volume (ECV) in patients with cardiac amyloidosis (CA).
  • Both modalities showed similar mean global ECVs, with strong correlations between CT-ECV and CMR-ECV across various heart segments.
  • Findings suggest that CT can effectively serve as a practical alternative to CMR for assessing ECV in a clinical setting, providing valuable insights related to patient status.

Article Abstract

Objectives: Myocardial extracellular volume (ECV) on computed tomography (CT), an alternative to cardiac magnetic resonance (CMR), has significant practical clinical advantages. However, the consistency between ECVs quantified via CT and CMR in cardiac amyloidosis (CA) has not been investigated sufficiently. Therefore, the current study investigated the application of CT-ECV in CA with CMR-ECV as the reference standard.

Methods: We retrospectively evaluated 31 patients with CA who underwent cardiac CT and CMR. Pearson correlation analysis was performed to investigate correlations between CT-ECV and CMR-ECV at each segment. Further, correlations between ECV and clinical parameters were assessed.

Results: There were no significant differences in the mean global ECVs between CT scan and CMR (51.3% ± 10.2% vs 50.0% ± 10.5%). CT-ECV was correlated with CMR-ECV at the septal (r = 0.88), lateral (r = 0.80), inferior (r = 0.79), anterior (r = 0.77) segments, and global (r = 0.87). In both CT and CMR, the ECV had a weak to strong correlation with high-sensitivity cardiac troponin T level, a moderate correlation with global longitudinal strain, and an inverse correlation with left ventricular ejection fraction. Further, the septal ECV and global ECV had a slightly higher correlation with the clinical parameters.

Conclusions: Cardiac CT can quantify myocardial ECV and yield results comparable to CMR in patients with CA. Moreover, a significant correlation between CT-ECV and clinical parameters was observed. Thus, CT-ECV can be an imaging biomarker and alternative to CMR-ECV.

Clinical Relevance Statement: Cardiac CT can quantify myocardial ECV and yield results comparable to CMR in patients with CA, and CT-ECV can be used clinically as an imaging biomarker and alternative to CMR-ECV.

Key Points: • A significant correlation was found between CT myocardial extracellular volume and cardiac MR myocardial extracellular volume in patients with cardiac amyloidosis. • In CT and cardiac MR, the myocardial extracellular volume correlated well with high-sensitivity cardiac troponin T level, global longitudinal strain, and left ventricular ejection fraction. • CT myocardial extracellular volume can be an imaging biomarker and alternative to cardiac MR myocardial extracellular volume.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00330-023-10129-wDOI Listing

Publication Analysis

Top Keywords

myocardial extracellular
28
extracellular volume
28
cardiac
13
cardiac amyloidosis
12
imaging biomarker
12
biomarker alternative
12
cardiac myocardial
12
myocardial
9
computed tomography
8
magnetic resonance
8

Similar Publications

Objectives: Subclinical myocardial involvement is common in systemic lupus erythematosus (SLE), but differences between new onset and longstanding SLE are not fully elucidated. This study compared myocardial involvement in new onset versus longstanding SLE using cardiovascular magnetic resonance (CMR).

Materials And Methods: We prospectively enrolled 24 drug-naïve new onset SLE patients, 27 longstanding SLE patients, and 20 healthy controls.

View Article and Find Full Text PDF

Intracellular electrophysiology is essential in neuroscience, cardiology, and pharmacology for studying cells' electrical properties. Traditional methods like patch-clamp are precise but low-throughput and invasive. Nanoelectrode Arrays (NEAs) offer a promising alternative by enabling simultaneous intracellular and extracellular action potential (iAP and eAP) recordings with high throughput.

View Article and Find Full Text PDF

Elevated phosphate levels in CKD - a direct threat for the heart.

Nephrol Dial Transplant

January 2025

Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.

Elevations in systemic phosphate levels, also called hyperphosphatemia, occur in chronic kidney disease (CKD) and during the normal aging process and are associated with various pathologies, such as cardiovascular injury. Experimental studies suggest that at high serum concentrations, phosphate can induce osteogenic differentiation of vascular smooth muscle cells and contribute to vascular calcification. However, the precise underlying mechanism leading to cardiovascular injury is not well understood.

View Article and Find Full Text PDF

Background: The neutrophil-mediated generation of neutrophil extracellular traps (NETs) results in an augmented inflammatory response and cellular tissue injury during acute myocardial infarction (AMI). Through the analysis of public database information, we discovered and confirmed putative critical genes involved in NETs-mediated AMI.

Methods: The AMI dataset GSE66360 and the single-cell dataset GSE163465 were downloaded from the Gene Expression Omnibus database.

View Article and Find Full Text PDF

Purpose: The major cardiac voltage-gated sodium channel Na1.5 (I) is essential for cardiac action potential initiation and subsequent propagation. Compound Chinese medicine Wenxin Keli (WXKL) has been shown to suppress arrhythmias and heart failure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!