Background: Small cell lung cancer (SCLC) is highly aggressive with limited therapeutic options and a poor prognosis. Moreover, noninvasive biomarker tools for detecting disease and monitoring treatment response are lacking. To address this, we evaluated serum biomarkers of extracellular matrix proteins not previously explored in SCLC.
Methods: We measured biomarkers in the serum of 16 patients with SCLC before and after chemotherapy as well as in the serum of 11 healthy individuals.
Results: Our findings demonstrated that SCLC serum had higher levels of collagen type I degradation, collagen type III formation, and collagen type XI formation than healthy controls. In addition, we observed higher levels of type XIX and XXII collagens, fibrinogen, and von Willebrand factor A formation in SCLC serum. The formation of type I collagen did not exhibit any discernible variation. However, we observed a decrease in the degradation of type I collagen following chemotherapy.
Conclusion: Overall, our findings revealed elevated levels of collagen and blood-clotting markers in the serum of SCLC patients, indicating the potential of ECM proteins as noninvasive biomarkers for SCLC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10542464 | PMC |
http://dx.doi.org/10.1111/1759-7714.15066 | DOI Listing |
JBMR Plus
February 2025
Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, United States.
Discoidin Domain Receptor 1 (DDR1) is a receptor tyrosine kinase that binds to and is activated by collagen(s), including collagen type I. deletion in osteoblasts and chondrocytes has previously demonstrated the importance of this receptor in bone development. In this study, we examined the effect of DDR1 ablation on bone architecture and mechanics as a function of aging.
View Article and Find Full Text PDFArthrosc Sports Med Rehabil
December 2024
UConn Institute for Sports Medicine, University of Connecticut, Storrs, Connecticut, U.S.A.
Purpose: To evaluate whether cumulative impact load and serum biomarkers are related to lower-extremity injury and to determine any impact load and cartilage biomarker relationships in collegiate female basketball athletes.
Methods: This was a prospective longitudinal study evaluating lower-extremity impact load, serum cartilage biomarkers, and injury incidence over the course of a single collegiate women's basketball season. Data were collected from August 2022 to April 2023; no other follow-up after the cessation of the season was conducted in this cohort.
Inflammation
January 2025
Department of Clinical Research Center for Wuxi No.2 People's Hospital, Jiangnan University Medical Center, Wuxi, 214000, Jiangsu, China.
Asthma is a chronic airway inflammatory disease of the airways characterized by the involvement of numerous inflammatory cells and factors. Therefore, targeting airway inflammation is one of the crucial strategies for developing novel drugs in the treatment of asthma. Phosphoinositide 3-kinase gamma (PI3Kγ) has been demonstrated to have a significant impact on inflammation and immune responses, thus emerging as a promising therapeutic target for airway inflammatory disease, including asthma.
View Article and Find Full Text PDFBiotechnol Lett
January 2025
Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.
Purpose: Cartilage repair necessitates adjunct therapies such as cell-based approaches, which commonly use MSCs and chondrocytes but is limited by the formation of fibro-hyaline cartilage. Articular cartilage-derived chondroprogenitors(CPs) offer promise in overcoming this, as they exhibit higher chondrogenic and lower hypertrophic phenotypes. The study aimed to compare the efficacy of various cell types derived from adult and foetal cartilage suspended in platelet-rich plasma(PRP) in repairing chondral defects in an Ex-vivo Osteochondral Unit(OCU) model.
View Article and Find Full Text PDFBiomed Chromatogr
February 2025
Department of Pharmacy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
The aim of this study was to investigate the potential mechanism of Lu-Jiao Fang (LJF) inhibiting endothelial-to-mesenchymal transition (EndMT) in pressure overload-induced cardiac fibrosis. Pharmacokinetic behaviors of the ingredients of LJF were evaluated by LC-MS/MS analysis. Then putative pathways by which LJF regulates EndMT were analyzed by network pharmacology and verified in transverse aortic constriction-induced cardiac fibrosis rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!