The global demand for intelligent sensing of aromatic amines has consistently increased due to concerns about health and the environment. Efforts to improve material design and understand mechanisms have been made, but highly efficient non-contact sensing with host-guest structures remains a challenge. Herein, we report the first example of non-contact, high-contrast sensing of aromatic amines in a hydrogen-bonded organic framework (HOF) based on a nitro-modified stereo building block. Direct observation of binding interactions of trapped amines is achieved, leading to charge separation-induced emission quenching between host and guests. Non-contact sensing of aniline and diphenylamine is realized with quenching efficiencies up to 91.7 % and 97.0 %, which shows potential for versatile applications. This work provides an inspiring avenue to engineer multifunctional HOFs via co-crystal preparations, thus enriching applications of porous materials with explicit mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202310225 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Institute of Chemistry Chinese Academy of Sciences, CAS Key Laboratory of Molecular Recognition and Function, Zhongguancun North First Street 2, 100190, Beijing, CHINA.
Fluorescent macrocyclic arenes have attracted increasing interest in macrocyclic and supramolecular chemistry due to their exceptional photophysical properties and versatile applications. Classical macrocyclic arenes modified with fluorescent groups at the upper or bottom rims have long provided valuable platforms across various fields. Recently, a large number of novel fluorescent macrocyclic arenes directly composed of polycyclic aromatic or heteroaromatic building blocks including naphthalene, anthracene, tetraphenylethene, pyrene, fluorene, carbazole, acridan, phenothiazine, coumarin, triphenylamine, benzothiadiazole and so on, have been reported, and they have shown specific fluorescent property, and also exhibited broad applications in molecular recognition, sensing, bioimaging and functional materials.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
Hypochlorous acid (HClO) is a well-known inflammatory signaling molecule, while lipid droplets (LDs) are dynamic organelles closely related to inflammation. Using organic small-molecule fluorescence imaging technology to target LDs for precise monitoring of HClO is one of the most effective methods for diagnosing inflammation-related diseases. A thorough investigation of how probes detect biological markers and the influencing factors can aid in the design of probe molecules, the selection of high-performance tools, and the accuracy of disease detection.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt. Electronic address:
Background: The current synthetic strategies for carbon dots (CDs) are usually time-consuming, rely on complicated processes, and need high temperatures and energy. Recent studies have successfully synthesized CDs at room temperature. Unfortunately, most CDs synthesized at room temperature are obtained under harsh reaction conditions, prepared using aromatic precursors, or need a long time to generate.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Agro‑Environmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi‑ku, Fukuoka, 8190395, Japan.
Studies on the compounds of aromatic oils and their effects on psychophysiological changes in humans are often conducted separately. To obtain better validation, a suitable protocol is needed that can be extrapolated to large-scale olfactory stimulation experiments. Unfortunately, this type of study is still rarely performed.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!