Cardiovascular disease (CVD) in cancer patients can affect the risk of unplanned readmissions, which have been reported to be costly and associated with worse mortality and prognosis. We aimed to demonstrate the feasibility of using machine learning techniques in predicting the risk of unplanned 180-day readmission attributable to CVD among hospitalized cancer patients using the 2017-2018 Nationwide Readmissions Database. We included hospitalized cancer patients, and the outcome was unplanned hospital readmission due to any CVD within 180 days after discharge. CVD included atrial fibrillation, coronary artery disease, heart failure, stroke, peripheral artery disease, cardiomegaly, and cardiomyopathy. Decision tree (DT), random forest, extreme gradient boost (XGBoost), and AdaBoost were implemented. Accuracy, precision, recall, F2 score, and receiver operating characteristic curve (AUC) were used to assess the model's performance. Among 358,629 hospitalized patients with cancer, 5.86% (n = 21,021) experienced unplanned readmission due to any CVD. The three ensemble algorithms outperformed the DT, with the XGBoost displaying the best performance. We found length of stay, age, and cancer surgery were important predictors of CVD-related unplanned hospitalization in cancer patients. Machine learning models can predict the risk of unplanned readmission due to CVD among hospitalized cancer patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439193PMC
http://dx.doi.org/10.1038/s41598-023-40552-4DOI Listing

Publication Analysis

Top Keywords

cancer patients
20
unplanned readmission
12
machine learning
12
risk unplanned
12
hospitalized cancer
12
readmission cvd
12
cardiovascular disease
8
hospitalized patients
8
cancer
8
patients cancer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!