The phonon-drag effect is useful for improving the thermoelectric performance, especially the Seebeck coefficient. Therefore, the phonon and electron transport properties of Si single crystals at different carrier densities were investigated, and the relationship between these properties and the phonon-drag effect was clarified. Phonon transport properties were determined using nanoindentation and spot-periodic heating radiation thermometry. The electron transport properties were determined based on the electrical conductivity of Si. The diffusive Seebeck coefficient derived from the electron transport properties was in good agreement with previous reports. However, the value of the phonon-drag Seebeck coefficient derived from the phonon transport properties is very low. This phenomenon suggests that phonons with a normal mean free path (MFP) do not contribute to the increase in the Seebeck coefficient; however, phonons with a long MFP and low frequency increase the Seebeck coefficient via the phonon-drag effect. Moreover, the phonon-drag effect was sufficiently pronounced even at 300 K and in the heavily doped region. These features are key in designing thermoelectric materials with enhanced performance derived from the phonon-drag effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439221PMC
http://dx.doi.org/10.1038/s41598-023-40685-6DOI Listing

Publication Analysis

Top Keywords

seebeck coefficient
24
transport properties
20
electron transport
12
single crystals
8
crystals carrier
8
carrier densities
8
phonon transport
8
properties determined
8
coefficient derived
8
increase seebeck
8

Similar Publications

The effect of hot isostatic pressing (HIP) on the thermoelectric power factor of zinc oxide (ZnO) has been examined. ZnO is expected to be a potential n-type oxide thermoelectric material that could enhance the thermoelectric conversion efficiency. The HIP treatment is useful for densifying the material and controlling crystal defects in the material by applying high temperatures and pressures simultaneously.

View Article and Find Full Text PDF

Thermoelectric Modulation of Neat TiCT MXenes by Finely Regulating the Stacking of Nanosheets.

Nanomicro Lett

December 2024

Department of Materials Science, Fudan University, Shanghai, 200433, People's Republic of China.

Emerging two-dimensional MXenes have been extensively studied in a wide range of fields thanks to their superior electrical and hydrophilic attributes as well as excellent chemical stability and mechanical flexibility. Among them, the ultrahigh electrical conductivity (σ) and tunable band structures of benchmark TiCT MXene demonstrate its good potential as thermoelectric (TE) materials. However, both the large variation of σ reported in the literature and the intrinsically low Seebeck coefficient (S) hinder the practical applications.

View Article and Find Full Text PDF

Optimization of Thermoelectric Performance in p-Type SnSe Crystals Through Localized Lattice Distortions and Band Convergence.

Adv Sci (Weinh)

December 2024

Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and optoelectronic engineering, Shenzhen University, Shenzhen, 518060, P. R. China.

Crystalline thermoelectric materials, especially SnSe crystals, have emerged as promising candidates for power generation and electronic cooling. In this study, significant enhancement in ZT is achieved through the combined effects of lattice distortions and band convergence in multiple electronic valence bands. Density functional theory (DFT) calculations demonstrate that cation vacancies together with Pb substitutional doping promote the band convergence and increase the density of states (DOS) near the Fermi surface of SnSe, leading to a notable increase in the Seebeck coefficient (S).

View Article and Find Full Text PDF

In this contribution, doping of oriented thin films is investigated for three PBTTT polymers bearing different side chains including linear alkyl ─(CH)─H, single ether ─(CH)─O─(CH)─H and alkyl-siloxane ─(CH)─(Si(CH)O)─Si(CH) A combination of transmission electron microscopy, polarized UV-vis-NIR spectroscopy and transport measurements helps uncover the essential role of the chemical nature of side chains on the efficacy of the doping and on the resulting thermoelectric performances in oriented PBTTT films. Siloxane side chains help to reach record alignment level of PBTTT with dichroic ratio beyond 50 for an optimized rubbing temperature but they impede effective doping of PBTTT crystals with FTCNNQ, resulting in very poor TE properties. By contrast, doping the amorphous phase of all three PBTTTs with magic blue (MB) results in excellent TE performances.

View Article and Find Full Text PDF

Unique thermoelectric properties of low-cost, widely available conducting polymers and multi-layered graphite structures have motivated the development of flexible thermoelectric generators using screen printing for low-temperature applications. Composites of polyaniline and graphite in different ratios with one weight percentage of bismuth telluride were prepared to fabricate flexible thermoelectric generators. The performance of the devices showed that the addition of graphite to polyaniline reduced the band gap energy from 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!