Objective: To elucidate long-term potentiation (LTP)-like effects on the primary motor cortical (M1) in progressive supranuclear palsy (PSP) and its relationships with clinical features.
Methods: Participants were 18 probable/possible PSP Richardson syndrome (PSP-RS) patients and 17 healthy controls (HC). We used quadripulse stimulation (QPS) over the M1 with an interstimulus interval of 5 ms (QPS-5) to induce LTP-like effect and analyzed the correlations between the degree of LTP-like effect and clinical features. We also evaluated cortical excitability using short interval intracortical inhibition (SICI), intracortical facilitation (ICF) and short interval intracortical facilitation (SICF) in 15 PSP patients and 17 HC.
Results: LTP-like effect after QPS in PSP was smaller than HC and negatively correlated with Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) score, especially bradykinesia, but not with either age or any scores of cognitive functions. The SICI was abnormally reduced in PSP, but neither ICF nor SICF differed from those of normal subjects. None of these cortical excitability parameters correlated with any clinical features.
Conclusions: LTP induction was impaired in PSP. The degree of LTP could reflect the severity of bradykinesia. The bradykinesia may partly relate with the motor cortical dysfunction.
Significance: The degree of motor cortical LTP could relate with the severity of motor symptoms in PSP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinph.2023.07.011 | DOI Listing |
Cells
January 2025
Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA.
Huntington's disease (HD) is an inherited neurodegenerative disease characterized by uncontrolled movements, emotional disturbances, and progressive cognitive impairment. It is estimated to affect 4.3 to 10.
View Article and Find Full Text PDFHum Brain Mapp
January 2025
Department of Psychology, Concordia University, Montreal, Quebec, Canada.
The cortex and cerebellum are densely connected through reciprocal input/output projections that form segregated circuits. These circuits are shown to differentially connect anterior lobules of the cerebellum to sensorimotor regions, and lobules Crus I and II to prefrontal regions. This differential connectivity pattern leads to the hypothesis that individual differences in structure should be related, especially for connected regions.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: White matter hyperintensities (WMH) are prominent neuroimaging markers of cerebral small vessel disease (CSVD) linked to cognitive decline. Nevertheless, the pathophysiological mechanisms underlying WMH remain unclear.
Objective: This study aimed to assess the structural decoupling index (SDI) as a novel metric for quantifying the brain's hierarchical organization associated with WMH in cognitively normal older adults
Methods: We analyzed data from 112 cognitively normal individuals with varying WMH burdens (43 high WMH burden and 69 low WMH burden).
Brain Behav
January 2025
Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany.
Purpose: Due to the highly individualized clinical manifestation of Parkinson's disease (PD), personalized patient care may require domain-specific assessment of neurological disability. Evidence from magnetic resonance imaging (MRI) studies has proposed that heterogenous clinical manifestation corresponds to heterogeneous cortical disease burden, suggesting customized, high-resolution assessment of cortical pathology as a candidate biomarker for domain-specific assessment.
Method: Herein, we investigate the potential of the recently proposed Mosaic Approach (MAP), a normative framework for quantifying individual cortical disease burden with respect to a population-representative cohort, in predicting domain-specific clinical progression.
Med Sci Monit
January 2025
Department of Rehabilitation, Guizhou Medical University, Guiyang, Guizhou, China.
BACKGROUND Swallowing is a complex behavior involving the musculoskeletal system and higher-order brain functions. We investigated the effects of different modalities of repetitive transcranial magnetic stimulation (rTMS) on the unaffected hemisphere and observed correlation between suprahyoid muscle activity and cortical activation in unilateral stroke patients when swallowing saliva, based on functional near-infrared spectroscopy (fNIRS). MATERIAL AND METHODS From November 2022 to March 2023, twenty-five patients with unilateral stroke were screened using computed tomography or magnetic resonance imaging and identified via a video fluoroscopic swallow study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!