Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Polymeric shape-memory elastomers can recover to a permeant shape from any programmed deformation under external stimuli. They are mostly cross-linked polymeric materials and can be shaped by three-dimensional (3D) printing. However, 3D printed shape-memory polymers so far only exhibit elasticity above their transition temperature, which results in their programmed shape being inelastic or brittle at lower temperatures. To date, 3D printed shape-memory elastomers with elasticity both below and above their transition temperature remain an elusive goal, which limits the application of shape-memory materials as elastic materials at low temperatures. In this paper, we printed, for the first time, a custom-developed shape-memory elastomer based on polyethylene glycol using digital light processing, which possesses elasticity and stretchability in a wide temperature range, below and above the transition temperature. Young's modulus in these two states can vary significantly, with a difference of up to 2 orders of magnitude. This marked difference in Young's modulus imparts excellent shape-memory properties to the material. The difference in Young's modulus at different temperatures allows for the programming of the pneumatic actuators by heating and softening specific areas. Consequently, a single actuator can exhibit distinct movement modes based on the programming process it undergoes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472330 | PMC |
http://dx.doi.org/10.1021/acsami.3c07436 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!