Discussion on key issues of carbon footprint accounting for bast fiber textiles.

Sci Total Environ

School of Fashion Design & Engineering of Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China; Zhejiang Academy of Ecological Civilization, Hangzhou, Zhejiang 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, Zhejiang 312000, China; Clothing Engineering Research Center of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China. Electronic address:

Published: November 2023

Bast fiber textiles have become increasingly popular as a sustainable alternative in recent years. Although the carbon emissions of bast fiber textiles have been studied using life cycle assessment method, there is a lack of comprehensive literature analyzing and summarizing the results. This study reviews the current state of research on the carbon emissions of bast fiber textiles. Compared to other plant fibers, there are fewer studies on the carbon footprint or life cycle assessment of bast fiber textiles, and these studies lack a comprehensive "cradle to grave" or "gate to grave" analysis. In addition, inconsistencies exist in the allocation methods used for carbon footprint assessments. This study suggests a combination of physical and economic allocation to conduct a more accurate environmental impact assessment of bast fiber textiles. On the basis of the above review, this study modularizes the process of the entire life cycle of textiles and analyzes the carbon sequestration and emission characteristics to determine the main considerations for carbon footprint assessment. The carbon sequestration effect of bast fiber textiles should be analyzed at the raw material extraction stage and at the end-of-life stage. Oxygen release and consumption are also considered as additional factors to be quantified and analyzed in this study. In the future, the modular method should be used for all carbon footprint evaluation reports for bast fiber textiles. This method helps to comprehensively quantify and evaluate the carbon footprint of bast fiber textiles throughout their entire life cycle. It can provide recommendations for green design, green production and sustainable consumption.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.166272DOI Listing

Publication Analysis

Top Keywords

bast fiber
36
fiber textiles
36
carbon footprint
24
life cycle
16
carbon
10
textiles
10
bast
9
fiber
9
carbon emissions
8
emissions bast
8

Similar Publications

Sensitive intelligent films can be used to accurately monitor food freshness. In this study, a cellulose acetate curcumin-loaded cyclodextrin (CD)-based metal-organic framework intelligent film (CA-Cur@CD-MOF) was developed to monitor shrimp freshness at different spoilage stages in real time. The mechanical, barrier, optical, and ammonia-sensitive properties of this film were studied.

View Article and Find Full Text PDF

Membranes have been used as versatile tools for the separation of various natural products; however, the selective separation of structural analogs of natural products using membranes remains challenging. In this study, biocomposite membranes based on poly(ionic liquids) and different natural fibers (jute, cotton, or wool) were successfully prepared. Natural fibers can regulate the microstructure and improve the mechanical properties of membranes.

View Article and Find Full Text PDF

Supramolecular transparent plastic engineering covalent-and-supramolecular polymerization.

Mater Horiz

January 2025

College of Chemistry and Chemical Engineering, Hunan University, Hunan 410082, P. R. China.

Supramolecular glass and plastic are a new generation of artificial transparent materials that exhibit excellent optical behavior and processability. However, owing to inherent deficiencies in their mechanical toughness and long-term stability, supramolecular materials lack the potential for functionalization and application. Inspired by the toughening phenomena in biological systems, a synergistic covalent-and-supramolecular polymerization strategy was applied to construct plastic-like supramolecular materials with high transmittance the solvent-free one-pot amidation of thioctic acid and (poly)amines.

View Article and Find Full Text PDF

Flax is an important crop grown for seed and fiber. Flax chromosome number is 2n = 30, and its genome size is about 450-480 Mb. To date, the genomes of several flax varieties have been sequenced and assembled.

View Article and Find Full Text PDF

In light of the increasingly adverse environmental conditions and the concomitant challenges to the survival of important crops, there is a pressing need to enhance the resilience of pepper seedlings to extreme weather. Carotenoid plays an important role in plants' resistance to abiotic stress. Nevertheless, the relationship between carotenoid biosynthesis and sweet pepper seedlings' resistance to different abiotic stresses remains uncertain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!