Particle engineering technologies have led to the commercialization of new inhaled powders like PulmoSol or PulmoSphere. Such platforms are produced by spray drying, a well-known process popular for its versatility, thanks to wide-ranging working parameters. Whereas these powders contain a high drug-loading, we have studied a low-dose case, in optimizing the production of powders with two anti-asthmatic drugs, budesonide and formoterol. Using a Design of Experiments approach, 27 powders were produced, with varying excipient mixes (cyclodextrins, raffinose and maltodextrins), solution concentrations, and spray drying parameters in order to maximize deep lung deposition, measured through fine particle fraction (next generation impactor). Based on statistical analysis, two powders made of hydropropyl-β-cyclodextrin alone or mixed with raffinose and L-leucine were selected. Indeed, the two powders demonstrated very high fine particle fraction (>55%), considerably better than commercially available products. Deep lung deposition has been correlated to very fine particle size and lower microparticles interactions shown by laser diffraction assays at different working pressures, and particle morphometry. Moreover, the two drugs would be predicted to deposit homogeneously into the lung according to impaction studies. Uniform delivery is fundamental to control symptoms of asthma. In this study, we develop carrier-free inhalation powders promoting very efficient lung deposition and demonstrate the high impact of inter-particular interactions intensity on their aerosolization behaviour.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2023.08.010DOI Listing

Publication Analysis

Top Keywords

lung deposition
12
fine particle
12
spray drying
8
deep lung
8
particle fraction
8
powders
7
particle
5
inhalation powder
4
powder development
4
development carrier
4

Similar Publications

Tobramycin nanoformulation for chronic pulmonary infections: From drug product definition to scale-up for preclinical evaluation.

Int J Pharm

January 2025

CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain; Kusudama Therapeutics SA, Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain; Biogipuzkoa Health Research Institute, Group of Innovation, 20014 San Sebastian, Spain.

Cystic fibrosis (CF) is characterized by abnormal mucus hydration due to a defective CF Transmembrane Regulator (CFTR) protein, leading to the production of difficult-to-clear mucus. This causes airflow obstruction, recurrent infections, and respiratory complications. Chronic lung infections are the leading cause of death for CF patients and inhaled tobramycin is the first-in-line antibiotic treatment against these infections, mainly caused by Pseudomonas aeruginosa in adult patients.

View Article and Find Full Text PDF

Lung tissue from human patients and murine models of sickle cell disease pulmonary hypertension (SCD-PH) show perivascular regions with excessive iron accumulation. The iron accumulation arises from chronic hemolysis and extravasation of hemoglobin (Hb) into the lung adventitial spaces, where it is linked to nitric oxide depletion, oxidative stress, inflammation, and tissue hypoxia, which collectively drive SCD-PH. Here, we tested the hypothesis that intrapulmonary delivery of hemopexin (Hpx) to the deep lung is effective at scavenging heme-iron and attenuating the progression of SCD-PH.

View Article and Find Full Text PDF

Associations of Serum Urate and Cardiovascular Events in a Clinical Trial of Interleukin-1β Blockade.

JACC Adv

January 2025

Center for Cardiovascular Disease Prevention, Divisions of Preventive Medicine and Cardiovascular Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Background: Serum urate (SU) associates with cardiovascular (CV) events, mortality, and gout.

Objectives: The purpose of this study was to assess whether SU predicts CV risk in a trial of interleukin (IL)-1β inhibition with canakinumab, and whether IL-1β blockade, kidney function, or gout alter these associations.

Methods: This study is a subanalysis of the Canakinumab Antiinflammatory Thrombosis Outcome Study (CANTOS), which randomized 10,061 patients with prior myocardial infarction and elevated high-sensitivity C-reactive protein to 3 doses of canakinumab or placebo.

View Article and Find Full Text PDF

Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.

View Article and Find Full Text PDF

Following the COVID-19 pandemic, the prevalence of pulmonary fibrosis has increased significantly, placing patients at higher risk and presenting new therapeutic challenges. Current anti-fibrotic drugs, such as Nintedanib, can slow the decline in lung function, but their severe side effects highlight the urgent need for safer and more targeted alternatives. This study explores the anti-fibrotic potential and underlying mechanisms of an endogenous peptide (P5) derived from fibroblast growth factor 2 (FGF2), developed by our research team.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!