Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Peristaltic pumping during bioprocessing can cause therapeutic protein loss and aggregation during use. Due to the complexity of this apparatus, root-cause mechanisms behind protein loss have been long sought. We have developed new methodologies isolating various peristaltic pump mechanisms to determine their effect on monomer loss. Closed-loops of peristaltic tubing were used to investigate the effects of peristaltic pump parameters on temperature and monomer loss, whilst two mechanism isolation methodologies are used to isolate occlusion and lateral expansion-relaxation of peristaltic tubing. Heat generated during peristaltic pumping can cause heat-induced monomer loss and the extent of heat gain is dependent on pump speed and tubing type. Peristaltic pump speed was inversely related to the rate of monomer loss whereby reducing speed 2.0-fold increased loss rates by 2.0- to 5.0-fold. Occlusion is a parameter that describes the amount of tubing compression during pumping. Varying this to start the contacting of inner tubing walls is a threshold that caused an immediate 20-30% additional monomer loss and turbidity increase. During occlusion, expansion-relaxation of solid-liquid interfaces and solid-solid interface contact of tubing walls can occur simultaneously. Using two mechanisms isolation methods, the latter mechanism was found to be most destructive and a function of solid-solid contact area, where increasing the contact area 2.0-fold increased monomer loss by 1.6-fold. We establish that a form of solid-solid contact mechanism whereby the contact solid interfaces disrupt adsorbed protein films is the root-cause behind monomer loss and protein aggregation during peristaltic pumping.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xphs.2023.08.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!