Cellulose aerogels exhibit biocompatibility and biodegradability, rendering them promising candidate for application in building energy conservation and insulation materials. However, the intrinsic inflammability of pristine cellulose aerogel causes unneglectable safety concerns, hindering their application in energy-efficient buildings. Herein, a thermal insulating, fire-retardant, strong, and lightweight aerogel was produced via freeze-casting suspensions of cellulose nanofibril (CNF) and l-glutamine functionalized boron nitride nanosheets (BNNS-g). The aerogel with a BNNS-g:CNF concentration ratio of 15:5 exhibited outstanding mechanical strength owing to the strong interaction between BNNS-g and CNF as well as satisfactory thermal insulating performance (0.052 W/m·K). Particularly, this aerogel showed excellent fire-retardant and self-extinguishing capabilities in the vertical burning test, which remained unscathed after over 60 s of burning in a butane flame. Further, the limit oxygen index (LOI) of this aerogel was 36.0 %, which was better than the LOIs of traditional petrochemical-based insulating materials. This study provides a promising strategy for producing aerogels with excellent properties using cellulose and other inorganic nano-fillers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.126370DOI Listing

Publication Analysis

Top Keywords

thermal insulating
12
insulating fire-retardant
8
boron nitride
8
aerogel
5
freeze-casting production
4
production thermal
4
insulating
4
fire-retardant lightweight
4
lightweight aerogels
4
aerogels based
4

Similar Publications

Passive Radiant Cooling and Heating are green and sustainable methods of radiant heat management without consuming additional energy. However, the absorption of sunlight and poor insulation of materials can reduce radiative cooling and also affect radiative heating performance. Herein, we have constructed porous hierarchical dual-mode silk nanofibrous aerogel (SNF) films with high mechanical toughness and stability using silk nanofibers/GO.

View Article and Find Full Text PDF

Domestic laundry wastewater is a major contributor to microfiber emissions in the aquatic environment. Among several mitigation measures, the use of external filters to capture microfibers from wastewater is one of the most efficient and commercially viable methods. This study attempted to develop an eco-friendly filtration medium to filter microfibers in laundry wastewater using luffa cylindrica fibers.

View Article and Find Full Text PDF

Acoustic, Mechanical, and Thermal Characterization of Polyvinyl Acetate (PVA)-Based Wood Composites Reinforced with Beech and Oak Wood Fibers.

Polymers (Basel)

January 2025

Research Laboratory for Sustainable Development and Health, Department of Applied Physics, Faculty of Sciences and Technics, Cadi Ayyad University, Marrakesh 40000, Morocco.

Considering the growing need for developing ecological materials, this study investigates the acoustic, mechanical, and thermal properties of wood composites reinforced with beech or oak wood fibres. Scanning electron microscopy (SEM) revealed a complex network of interconnected pores within the composite materials, with varying pore sizes contributing to the material's overall properties. Acoustic characterization was conducted using a two-microphone impedance tube.

View Article and Find Full Text PDF

Starch foam has attracted significant attention as an alternative to expanded styrene (EPS) foam owing to its abundance and biodegradability. Despite these merits, its limited thermal insulation and flexibility compared to EPS have hindered its utilization in packaging. Herein, we report the effect of blending with starch/PBAT on foaming behavior and physical properties during foaming processing.

View Article and Find Full Text PDF

Comparative, Cost and Multi-Criteria Analyses of Traditional Binders in the Composition of Hemp-Based Finishing Products.

Materials (Basel)

January 2025

Department of Civil Engineering and Management, Faculty of Civil Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania.

The objective of this paper is to analyze the characteristics of twelve compositions based on hemp shiv and four traditional binders used in the construction industry: cement, plaster, hydrated lime and clay, with the aim of using the resulting materials as final finishing products applicable to the raw area of walls, slabs and other construction elements for walls. Comparative, cost and multi-criteria analyses were carried out on the proposed compositions. The comparative analysis focused on acoustic, thermal, mechanical and fire characteristics, followed by a cost analysis and ending with multi-criteria analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!