Aqueous zinc ion batteries (AZIBs) have gained extensive attention due to the numerous advantages of zinc, such as low redox potential, high abundance, low cost as well as high theoretical specific capacity. However, the development of AZIBs is still hampered due to the lack of suitable cathodes. In this work, the freestanding defective ammonium vanadate@MXene (d-NVO@MXene) hybrid film was synthesized by simple vacuum filtration strategy. Due to the presence of the hierarchical freestanding structure, outstanding MXene conductive networks and abundant oxygen vacancy (in the d-NVO nanoribbons), the d-NVO@MXene hybrid film can not only expose more active sites but also possess outstanding conductivity and kinetics of charge transfer/ion diffusion. When the d-NVO@MXene hybrid film was directly used as the cathode, it displayed a high specific capacity of 498 mAh/g at 0.5 A/g and superior cycling stability performance with near 100 % coulomb efficiency. Furthermore, the corresponding storage mechanism was elucidated by ex situ various characterizations. This work provides new ideas for the development of freestanding vanadium-based cathode materials for AZIBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.08.081 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!