Tumor interstitial pressure represents the greatest barrier against drug diffusion into the depth of the tumor. Biometric nanomotors highlight the possibility of enhanced deep penetration and improve cellular uptake. However, control of their directionality remains difficult to achieve. Herein, we report cysteine-arginine-glutamic acid-lysine-alanine (CREKA)-modified ceria@polydopamine nanobowls as tumor microenvironment-fueled nanoscale motors for positive chemotaxis into the tumor depth or toward tumor cells. Upon laser irradiation, this nanoswimmer rapidly depletes the tumor microenvironment-specific hydrogen peroxide (HO) in the nanobowl, contributing to a self-generated gradient and subsequently propulsion (9.5 μm/s at 46 °C). Moreover, the asymmetrical modification of CREKA on nanobowls could automatically reconfigure the motion direction toward tumor depth or tumor cells in response to receptor-ligand interaction, leading to a deep penetration (70 μm in multicellular spheroids) and enhanced antitumor effects over conventional nanomedicine-induced chemo-photothermal therapy (tumor growth inhibition rate: 84.2% versus 56.9%). Thus, controlling the direction of nanomotors holds considerable potential for improved antitumor responses, especially in solid tumors with high tumor interstitial pressure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.3c05232 | DOI Listing |
AAPS PharmSciTech
January 2025
Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, India.
The prevalence and death due to cancer have been rising over the past few decades, and eliminating tumour cells without sacrificing healthy cells remains a difficult task. Due to the low specificity and solubility of drug molecules, patients often require high dosages to achieve the desired therapeutic effects. Silica nanoparticles (SiNPs) can effectively deliver therapeutic agents to targeted sites in the body, addressing these challenges.
View Article and Find Full Text PDFGenome Res
January 2025
University Medical Center Utrecht, Utrecht University, Oncode Institute, Cyclomics
Shallow genome-wide cell-free DNA (cfDNA) sequencing holds great promise for non-invasive cancer monitoring by providing reliable copy number alteration (CNA) and fragmentomic profiles. Single nucleotide variations (SNVs) are, however, much harder to identify with low sequencing depth due to sequencing errors. Here we present Nanopore Rolling Circle Amplification (RCA)-enhanced Consensus Sequencing (NanoRCS), which leverages RCA and consensus calling based on genome-wide long-read nanopore sequencing to enable simultaneous multimodal tumor fraction estimation through SNVs, CNAs, and fragmentomics.
View Article and Find Full Text PDFLangenbecks Arch Surg
January 2025
Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University, Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
Purpose: The impact of body-cavity depth on open (OLR) and laparoscopic liver resection (LLR) of segment 7 remains unclear. Therefore, we investigated the influence of body-cavity depth at the upper-right portion of the abdomen on LLR and OLR of segment 7.
Methods: In total, 101 patients who underwent segment-7 liver resection over 2010-2023 were included.
Breast Cancer (Auckl)
January 2025
Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
Background: Circulating rare cells participate in breast cancer evolution as systemic components of the disease and thus, are a source of theranostic information. Exploration of cancer-associated rare cells is in its infancy.
Objectives: We aimed to investigate and classify abnormalities in the circulating rare cell population among early-stage breast cancer patients using fluorescence marker identification and cytomorphology.
Cureus
December 2024
Anesthesiology, Jikei University School of Medicine, Tokyo, JPN.
Background Femoral neuropathy is a significant postoperative complication in gynecological surgery that can severely impact patient mobility and quality of life. Among various mechanisms of nerve injury, retractor-induced compression against the pelvic sidewall has been identified as a particularly crucial causative factor. Despite this well-recognized mechanism and its clinical importance, few studies have investigated specific preventive strategies for this iatrogenic complication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!