Microporous metal-organic frameworks (MOFs) have been widely studied for molecular separation and catalysis. The uniform micropores of MOFs (<2 nm) can introduce diffusion limitations and render the interiors of the crystal inaccessible to target molecules. The introduction of hierarchical porosity (interconnected micro and mesopores) can enhance intra-crystalline diffusion while maintaining the separation/catalytic selectivity. Conventional hierarchical MOF synthesis involves complex strategies such as elongated linkers, soft templating, and sacrificial templates. Here, we demonstrate a more general approach using our controlled acid gas-enabled degradation and reconstruction (Solvent-Assisted Crystal Redemption) strategy. Selective linker labilization of ZIF-8 is shown to generate a hierarchical pore structure with mesoporous cages (∼50 nm) while maintaining microporosity. Detailed structural and spectroscopic characterization of the controlled degradation, linker insertion, and subsequent linker thermolysis is presented to show the clustering of acid gas-induced defects and the generation of mesopores. These findings indicate the generality of controlled degradation and reconstruction as a means for linker insertion in a wider variety of MOFs and creating hierarchical porosity. Enhanced molecular diffusion and catalytic activity in the hierarchical ZIF-8 are demonstrated by the adsorption kinetics of 1-butanol and a Knoevenagel condensation reaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472435PMC
http://dx.doi.org/10.1021/acsami.3c08344DOI Listing

Publication Analysis

Top Keywords

hierarchical zif-8
4
zif-8 materials
4
materials acid
4
acid gas-induced
4
gas-induced defect
4
defect sites
4
sites synthesis
4
synthesis characterization
4
characterization functional
4
functional properties
4

Similar Publications

Living cell systems possess multiple isolated compartments that can spatially confine complex substances and shield them from each other to allow for feedback reactions. In this work, a bioinspired design of metal-organic frameworks (MOFs) with well-defined multishelled matrices was fabricated as a hierarchical host for multiple guest substances including fluorogenic molecules and catalytic nanoparticles (NPs) at the separated locations for the development of a dual-mode glycoprotein assay. The multispatial-compartmental zeolitic imidazolate framework-8 (ZIF-8) constituents were synthesized via epitaxial shell-by-shell overgrowth to guide the integration and spatial organization of host guests.

View Article and Find Full Text PDF

High-efficiency respiratory protection and intelligent monitoring by nanopatterning of electroactive poly(lactic acid) nanofibers.

Int J Biol Macromol

December 2024

School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China; College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China. Electronic address:

The advent of multifunctional nanofibrous membranes (NFMs) has led to the development of next-generation air filters that are ready to intercept fine particulate matters (PMs) and monitor the respiratory diseases. However, it is still challenging to fabricate biodegradable NFMs featuring the desirable combination of high filtration efficiencies, low air resistance, and intelligent real-time monitoring. Herein, a hierarchical nanopatterning approach was proposed to functionalize the stereocomplexed poly(lactic acid) (PLA) (SC-PLA) nanofibers via the combined electrospinning of SC-PLA and electrospray of CNT@ZIF-8 nanohybrids.

View Article and Find Full Text PDF

The ability to tailor surface area, porosity, and morphologies has driven extensive research into the synthesis of metal-organic frameworks derived carbons and their applications in energy storage. This study presents the development of three-dimensional hierarchically porous carbon derived from polystyrene and small-sized zeolitic imidazolate framework-8 (ZIF-8) particles. Incorporating nanometer-sized ZIF-8 particles forms a core-shell structure in the pre-carbonization stage, transforming into a porous carbon material with a range of pores from micro to macropores after carbonization.

View Article and Find Full Text PDF

Highly efficient dye adsorption by hierarchical porous SA/PVA/ZIF-8 composite microgels prepared via microfluidics.

Carbohydr Polym

February 2025

Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Republic of Korea; School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea. Electronic address:

Hierarchical porous composite microgels (SPZ microgels) were synthesized using microfluidic technology, composed of sodium alginate (SA), polyvinyl alcohol (PVA), and zeolitic imidazolate framework-8 (ZIF-8). The incorporation of ZIF-8 nanoparticles led to the formation of significant porous structures within the microgels, greatly enhancing their dye adsorption performance. Additionally, the diffusion of acetone during the crosslinking reaction resulted in sodium chloride crystal formation, creating a hierarchical porous structure with larger internal porous channels and smaller external channels.

View Article and Find Full Text PDF

Constructing interconnected hierarchical porous structures and nitrogen-doped carbon nanofibers for superior capacitive deionization.

J Colloid Interface Sci

March 2025

Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China. Electronic address:

Article Synopsis
  • - Capacitive Deionization (CDI) is a promising and eco-friendly approach for desalinating low-salinity water, but current materials struggle with factors like limited surface area and slow ion transport, which affect their efficiency.
  • - This study introduces a method to create carbon nanofibers with interconnected porous structures and nitrogen doping by using Zeolite Imidazolate Framework-8 (ZIF-8) nanoparticles for enhanced CDI performance.
  • - The optimized carbon nanofibers show a significant increase in desalination capacity (68.11 mg/g) and maintain high efficiency over multiple cycles, outperforming traditional materials like activated carbon and graphene.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!