The kidney lost a lot of protein in the urine when you have nephrotic syndrome (NS). Clinical manifestations mostly common in NS include massive proteinuria, hypoalbuminemia, hyperlipidemia, and edema. Idiopathic nephrotic syndrome is currently classified into steroid-dependent (SDNS) and steroid-resistant (SRNS) based on the initial response to corticosteroid therapy at presentation. Several reports examined the association of the MYH9 gene (rs3752462, C > T) variant and ELMO1 gene (rs741301 G > A) variant as risk factors for Nephrotic Syndrome. This study aimed to determine the potential effect of the MYH9 gene (rs3752462, C > T) and ELMO1 gene (rs741301) variant on the risk of (NS) among Egyptian Children. This study included two hundred participants involving 100 nephrotic syndrome (NS) cases and 100 healthy controls free from nephrotic syndrome (NS). The MYH9 gene (rs3752462, C > T) variant and ELMO1 gene (rs G > A741301) variant were analyzed by ARMS-PCR technique. Nephrotic syndrome cases include 74% SRNS and 26% SDNS. Higher frequencies of the heterozygous carrier (CT) and homozygous variant (TT) genotypes of the MYH9 (rs3752462, C > T) variant were observed in NS patients compared to the controls with p-value < 0.001. The frequencies of the MYH9 (rs3752462, C > T variant indicated a statistically significant elevated risk of NS under various genetic models, including allelic model (OR 2.85, p < 0.001), dominant (OR 3.97, p < 0.001) models, and the recessive model OR 5.94, p < 0.001). Higher frequencies of the heterozygous carrier (GA) and homozygous variant (AA) genotypes of ELMO1gene (rs G > A741301) variant were observed in NS patients compared to the controls with p-value < 0.001. The frequencies of the ELMO1 (rs G > A741301) variant indicated a statistically significant elevated risk of NS under various genetic models, including allelic model (OR 2.15, p < 0.001), dominant models (OR 2.8, p < 0.001), and the recessive model (OR 4.17, p = 0.001). Both MYH9 and ELMO1 gene variants are significantly different in NS in comparison with the control group (p < 0.001). The MYH9 gene (rs3752462, C > T) and ELMO1gene (rs G > A741301) variants were considered independent risk factors for NS among Egyptian Children.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10528-023-10481-yDOI Listing

Publication Analysis

Top Keywords

nephrotic syndrome
28
rs3752462 c > t
16
myh9 gene
12
gene rs3752462
12
c > t variant
12
elmo1 gene
12
myh9 rs3752462
8
variant
8
variant elmo1
8
gene rs741301
8

Similar Publications

Background And Hypothesis: The PLA2R antibody test is a valuable first-line diagnostic tool for primary membranous nephropathy (MN), helping to identify PLA2R-related MN and potentially eliminating the need for a kidney biopsy in some individuals. By reducing the reliance on biopsies, the test streamlines diagnosis and improves patient care. However, determining the optimal PLA2R measurement method and cut-off is critical to maximising the benefits of the test and minimising any harms.

View Article and Find Full Text PDF

Minimal change disease (MCD) accounts for 10 - 15% of idiopathic nephrotic syndromes in adults. Chronic hepatitis C virus (HCV) infection is rarely ascribed as a cause of MCD and was previously associated with interferon-based therapy. MCD in treatment-naïve chronic HCV infection is extremely rare, with only 3 cases reported in the literature.

View Article and Find Full Text PDF

Nephrotic syndrome, a multifaceted medical condition characterized by significant proteinuria, has recently prompted a reorientation of research efforts toward B-cell-mediated mechanisms. This shift underscores the pivotal role played by B-cells in its pathogenesis. The aim of this study was to explore potential therapeutic pathways, with specific attention given to compounds found in , including withanolides, such as physalins, which constitute one of the five distinct withanolide subgroups identified in .

View Article and Find Full Text PDF

Genetic and clinical spectrum of steroid-resistant nephrotic syndrome with nuclear pore gene mutation.

Pediatr Nephrol

January 2025

Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Center), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.

Background: Steroid-resistant nephrotic syndrome (SRNS) is insensitive to steroid therapy and overwhelmingly progresses to kidney failure (KF), the known pathogenic genes of which include key subunits of the nuclear pore complex (NPC), a less-recognized contributor to glomerular podocyte injury.

Methods: After analyzing their clinical characterizations and obtaining parental consent, whole-exome sequencing (WES) was performed on patients with SRNS. Several nucleoporin (NUP) biallelic pathogenic variants were identified and further analyzed by cDNA-PCR sequencing from white cells of peripheral blood, minigene assay, immunohistochemical (IHC) staining, and electron microscopy (EM) ultrastructure observation of kidney biopsy, as well as multiple in silico prediction tools, including 3D protein modeling.

View Article and Find Full Text PDF

Beyond Redox Regulation: Novel Roles of TXNIP in the Pathogenesis and Therapeutic Targeting of Kidney Disease.

Am J Pathol

January 2025

Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA. Electronic address:

Cellular stress conditions, such as oxidative and endoplasmic reticulum (ER) stresses contribute to development of various kidney diseases. Oxidative stress is prompted by reactive oxygen species (ROS) accumulation and delicately mitigated by glutathione and thioredoxin (Trx) antioxidant systems. Initially identified as a Trx-binding partner, thioredoxin interacting protein (TXNIP) is significantly upregulated and activated by oxidative and ER stresses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!